吉川 周二SHUJI YOSHIKAWA

Last Updated :2025/05/09

所属・職名
広島大学 教授

基本情報

学位

  • 博士(理学) (東北大学)

研究キーワード

  • 非線形偏微分方程式論

所属学会

  • 日本応用数理学会
  • 日本機械学会
  • 日本数学会
  • 応用数理学会(SIAM)

教育活動

授業担当

  1. 2025年, 教養教育, 4ターム, 数学演習II[1工三,1工四]
  2. 2025年, 学部専門, 2ターム, 応用数学III
  3. 2025年, 学部専門, 1ターム, 応用数理A
  4. 2025年, 修士課程・博士課程前期, 2ターム, 数理学A

研究活動

学術論文(★は代表的な論文)

  1. A transmission problem for wave equations in infinite waveguides, Applied Mathematics Letters, pp. 109405-109405, 202411
  2. Asymptotic profiles for the Cauchy problem of damped beam equation with two variable coefficients and derivative nonlinearity, Discrete and Continuous Dynamical Systems, 44巻, 8号, pp. 2280-2308, 202411
  3. Modelling for a new mechanical passive damper and its mathematical analysis, Mathematical Modelling and Analysis, 29巻, 4号, pp. 600-620, 20241011
  4. Prediction of viscoelastic effective creep compliances in cracked cross-ply composite laminates, Mechanics of Materials, pp. 105085-105085, 202407
  5. Structure-preserving finite difference scheme for 1D thermoviscoelastoplastic equations under uniformly distributed temperature, Mathematics and Computers in Simulation, 210巻, pp. 147-168, 202308
  6. A new conservative finite difference scheme for 1D Cahn–Hilliard equation coupled with elasticity, Journal of Applied Analysis, 20220128
  7. Energy-conserving finite difference schemes for nonlinear wave equations with dynamic boundary conditions, Applied Numerical Mathematics, 171巻, pp. 1-22, 202201
  8. A second-order accurate structure-preserving scheme for the Cahn-Hilliard equation with a dynamic boundary condition, Communications on Pure and Applied Analysis, 202111
  9. Global existence for a semi-discrete scheme of some quasilinear hyperbolic balance laws, Journal of Mathematical Analysis and Applications, 498巻, 1号, pp. 124929-124929, 202101
  10. Classification of asymptotic profiles for the Cauchy problem of damped beam equation with two variable coefficients: Effective damping case, Journal of Differential Equations, 272巻, 25号, pp. 938-957, 202101
  11. Error estimate for structure-preserving finite difference schemes of the one-dimensional Cahn-Hilliard system coupled with viscoelasticity, RIMS Kokyuroku Bessatsu, 82巻, pp. 159-175, 202006
  12. Remarks on energy methods for structure-preserving finite difference schemes --small data global existence and unconditional error estimate--, Applied Mathematics and Computation, 341巻, 15号, pp. 80-92, 201901
  13. Structure-preserving finite difference schemes for a semilinear thermoelastic system with second order time derivative, Japan Journal of Industrial and Applied Mathematics, 35巻, 3号, pp. 1213-1244, 201810
  14. Asymptotic profile of solution for the Cauchy problem of beam equation with variable coefficient, APPLIED MATHEMATICS LETTERS, 76巻, pp. 236-241, 201802
  15. Shape Memory Wires in R^3, Shape Memory Alloys - Fundamentals and Applications, 201709
  16. STRUCTURE-PRESERVING FINITE DIFFERENCE SCHEMES FOR THE CAHN HILLIARD EQUATION WITH DYNAMIC BOUNDARY CONDITIONS IN THE ONE-DIMENSIONAL CASE, COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 16巻, 5号, pp. 1915-1938, 201709
  17. Energy method for structure-preserving finite difference schemes and some properties of difference quotient, JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 311巻, pp. 394-413, 201702
  18. An error estimate for structure-preserving finite difference scheme for the Falk model system of shape memory alloys, IMA JOURNAL OF NUMERICAL ANALYSIS, 37巻, 1号, pp. 477-504, 201701
  19. Decay estimates for the Cauchy problem for the damped extensible beam equation, APPLICABLE ANALYSIS, 95巻, 5号, pp. 1118-1136, 201605
  20. A conservative finite difference scheme for the Falk model system of shape memory alloys, ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 95巻, 12号, pp. 1393-1410, 201512
  21. Singular limits in the Cauchy problem for the damped extensible beam equation, JOURNAL OF DIFFERENTIAL EQUATIONS, 259巻, 4号, pp. 1297-1322, 201508
  22. INVARIANT MEASURES FOR THE ISOTHERMAL FALK MODEL OF SHAPE MEMORY ALLOYS, GAKUTO International Series, Mathematical Sciences and Applications, 37巻, pp. 163-182, 201504
  23. On the decay property of solutions to the Cauchy problem of the semilinear beam equation with weak damping for large initial data, NONLINEAR DYNAMICS IN PARTIAL DIFFERENTIAL EQUATIONS, 64巻, pp. 507-514, 2015
  24. AN ERROR ESTIMATE OF CONSERVATIVE FINITE DIFFERENCE SCHEME FOR THE BOUSSINESQ TYPE EQUATIONS, Advances in Mathematical Sciences and Applications, 23巻, pp. 413-435, 201406
  25. On the initial value problem of the semilinear beam equation with weak damping I: Smoothing effect, JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 401巻, 1号, pp. 244-258, 201305
  26. Asymptotic profiles of solutions for the isothermal Falk-Konopka system of shape memory alloys with weak damping, Asymptotic Analysis, 82巻, 3-4号, pp. 331-372, 2013
  27. On the initial value problem of the semilinear beam equation with weak damping II: Asymptotic profiles, JOURNAL OF DIFFERENTIAL EQUATIONS, 253巻, 11号, pp. 3061-3080, 201212
  28. ASYMPTOTIC PROFILE OF SOLUTIONS FOR THE LIMIT UNSTABLE CAHN-HILLIARD EQUATION WITH INERTIAL TERM, DIFFERENTIAL AND INTEGRAL EQUATIONS, 25巻, 3-4号, pp. 341-362, 201203
  29. STABILITY OF THE STEADY STATE FOR MULTI-DIMENSIONAL THERMOELASTIC SYSTEMS OF SHAPE MEMORY ALLOYS, DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 5巻, 1号, pp. 209-217, 201202
  30. A QUASILINEAR THERMOVISCOELASTIC SYSTEM FOR SHAPE MEMORY ALLOYS WITH TEMPERATURE DEPENDENT SPECIFIC HEAT, COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 8巻, 3号, pp. 1093-1115, 200905
  31. Stability of the steady state for the Falk model system of shape memory alloys, MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 30巻, 17号, pp. 2233-2245, 200711
  32. Remarks on the energy class solution for the Falk model system of shape memory alloys, Nonlinear Dispersive Equations: GAKUTO International Series of Mathematical Sciences and Applications, 26巻, pp. 227-237, 2007
  33. Global Solutions for Shape Memory Alloy Systems, Tohoku Mathematical Publications, 32巻, pp. 1-105, 2007
  34. On thermoelastic systems arising in shape memory alloys, Advanced Studies in Pure Mathematics, 47巻, 1号, pp. 383-396, 2007
  35. Quasi-linear thermoelasticity system arising in shape memory materials, SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 38巻, 6号, pp. 1733-1759, 2007
  36. Weak solutions for the Falk model system of shape memory alloys in energy class, MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 28巻, 12号, pp. 1423-1443, 200508
  37. One-dimensional shape memory alloy problem with small viscosity, Mathematical Approach to Nonlinear Phenomena: GAKUTO International Series of Mathematical Sciences and Applications, 23巻, pp. 1-8, 2005
  38. Small energy global existence for a two-dimensional thermoelastic system of shape memory materials, Mathematical Approach to Nonlinear Phenomena: GAKUTO International Series of Mathematical Sciences and Applications, 23巻, 2005
  39. Unique global existence for a three-dimensional thermoelastic system of shape memory alloys, Advances in the Mathematical Sciences and Applications, 15巻, pp. 603-627, 2005

外部資金

競争的資金等の採択状況

  1. 科学研究費助成事業, 固体材料の動的変形の数学解析, 2024年04月01日, 2028年03月31日
  2. 科学研究費助成事業 国際共同研究加速基金(国際共同研究強化(A)), 炭素繊維複合材料の数学解析, 2020年04月, 2024年03月
  3. 科学研究費助成事業 基盤研究(C), 固体材料の動的挙動の数学解析, 2020年04月, 2024年03月
  4. 住友財団 基礎科学研究助成, 弾塑性の構造保存型数値解法, 2018年11月, 2021年11月
  5. 科学研究費助成事業 基盤研究(C), 熱弾性と熱弾塑性の数学解析, 2016年04月, 2020年03月
  6. 科学研究費助成事業 基盤研究(C), 熱弾性と熱弾塑性の数学解析, 2013年04月, 2017年03月
  7. 科学研究費補助金 若手研究(B), 形状記憶合金の熱弾塑性の数学解析, 2010年04月, 2014年03月
  8. 住友財団 基礎科学研究助成, 形状記憶合金の熱弾塑性の安定形状についての数学解析, 2009年11月, 2011年05月
  9. 科学研究費補助金 若手研究(B), 形状記憶合金方程式の可解性及び解の性質に関する研究, 2007年04月, 2010年03月
  10. 財団法人 長岡技術科学大学技術開発教育研究振興会 研究助成, ヒステレシス効果の数理ファイナンスへの応用, 2007年04月, 2008年03月
  11. 特別研究員奨励費, 形状記憶合金の相転移現象を記述する方程式系に対する調和解析的手法を用いた研究, 2005年04月, 2007年03月