柘植 直樹NAOKI TSUGE

Last Updated :2025/01/07

所属・職名
大学院先進理工系科学研究科 教授
メールアドレス
ntsugehiroshima-u.ac.jp

基本情報

学位

  • 修士(理学) (京都大学)
  • 博士(理学) (京都大学)

教育活動

授業担当

  1. 2024年, 教養教育, 4ターム, 数学演習II[1工一]
  2. 2024年, 学部専門, 1ターム, 応用数学II
  3. 2024年, 学部専門, 2ターム, 応用数学III

研究活動

学術論文(★は代表的な論文)

  1. Positive solutions to the prey-predator equations with dormancy of predators., European J. Appl. Math., 35巻, 1号, pp. 96-108, 2024
  2. Global existence and stability of solutions to river flow system., Commun. Appl. Math. Comput., 5巻, 3号, pp. 1247-1255, 2023
  3. Uniformly time-independent L^{infty} estimate for a one-dimensional hydrodynamic model of semiconductors., Front. Math., 18巻, 2号, pp. 385-394, 2023
  4. Existence of a time periodic solution for the compressible Euler equation with a time periodic outer force in a bounded interval., Arch. Ration. Mech. Anal., 247巻, 3号, 2023
  5. Global existence of a solution for isentropic gas flow in the Laval nozzle with a friction term., SIAM J. Math. Anal., 54巻, 2号, pp. 2142-2162, 2022
  6. Remarks on the energy inequality of a global L^{infty} solution to the compressible Euler equations for the isentropic nozzle flow., Commun. Math. Sci., 19巻, 6号, pp. 1611-1626, 2021
  7. A well-posedness for the reaction diffusion equations of Belousov-Zhabotinsky reaction., Osaka J. Math., 58巻, 1号, pp. 59-70, 2021
  8. Global entropy solutions to the compressible Euler equations in the isentropic nozzle flow. Hyperbolic problems: theory, numerics, applications., AIMS Ser. Appl. Math., 10巻, pp. 666-673, 2020
  9. Global existence and stability to the polytropic gas dynamics with an outer force., Appl. Math. Lett., 95巻, pp. 36-40, 2019
  10. Global existence and stability to the polytropic gas dynamics with an outer force, Applied Mathematics Letters, 95巻, pp. 36-40, 2019
  11. Existence of a global solution for a scalar conservation law with a source term: nonlinear resonance, invariant region depending on the space variable., Acta Appl. Math., 147巻, pp. 177-186, 2017
  12. Global entropy solutions to the compressible Euler equations in the isentropic nozzle flow for large data., Nonlinear Anal. Real World Appl., 37巻, pp. 217-238, 2017
  13. Existence and stability of solutions to the compressible Euler equations with an outer force, Nonlinear Analysis: Real World Applications, 27巻, pp. 203-220, 2016
  14. Existence of a global solution to a scalar conservation law with a source term for large data., J. Math. Anal. Appl., 432巻, 2号, pp. 862-867, 2015
  15. Existence of global solutions for isentropic gas flow in a divergent nozzle with friction., Math. Anal. Appl., 426巻, 2号, pp. 971-977, 2015
  16. Existence of a global solution to a scalar conservation law with a source term for large data, Journal of Mathematical Analysis and Applications, 432巻, 2号, pp. 862-867, 2015
  17. ★, Isentropic gas flow for the compressible Euler equation in a nozzle., Arch. Ration. Mech. Anal., 209巻, 2号, pp. 365-400, 2013
  18. ★, Existence of global solutions for unsteady isentropic gas flow in a Laval nozzle., Arch. Ration. Mech. Anal., 205巻, 1号, pp. 151-193, 2012
  19. Existence and uniqueness of stationary solutions to a one-dimensional bipolar hydrodynamic model of semiconductors., Nonlinear Anal., 73巻, 3号, pp. 779-787, 2010
  20. Uniqueness of the stationary solutions for a fluid dynamical model of semiconductors., Osaka J. Math., 46巻, 4号, pp. 931-937, 2009
  21. Large time decay of solutions to isentropic gas dynamics with spherical symmetry., J. Hyperbolic Differ. Equ., 6巻, 2号, pp. 371-387, 2009
  22. Global solutions to the compressible Euler equations with gravitational source., J. Hyperbolic Differ. Equ., 5巻, 2号, pp. 317-346, 2008
  23. Large time decay of solutions to isentropic gas dynamics., Quart. Appl. Math., 65巻, 1号, pp. 135-143, 2007
  24. ★, Global L^{infty} solutions of the compressible Euler equations with spherical symmetry., J. Math. Kyoto Univ., 46巻, 3号, pp. 457-524, 2006
  25. Global L^{infty} solutions of the compressible Euler equations with damping and spherical symmetry., J. Math. Kyoto Univ., 44巻, 1号, pp. 193-201, 2004
  26. Spherically symmetric flow of the compressible Euler equations—for the case including the origin., J. Math. Kyoto Univ., 44巻, 1号, pp. 129-171, 2004
  27. The compressible Euler equations for an isothermal gas with spherical symmetry., J. Math. Kyoto Univ., 43巻, 4号, pp. 737-754, 2004

外部資金

競争的資金等の採択状況

  1. 科学研究費助成事業, 圧縮性流体に対する数学的手法の構築と他の方程式への応用, 2017年, 2021年
  2. 科学研究費助成事業, 圧縮性流体の数学的解明, 2013年, 2016年
  3. 科学研究費助成事業, 保存則の表す現象の数学的解明, 2010年, 2012年
  4. 科学研究費助成事業, 流体の数学解析, 2007年, 2007年
  5. 科学研究費助成事業, 気体の数学解析, 2006年, 2006年