Yoshihiro Sambongi

Last Updated :2019/08/09

Affiliations, Positions
Graduate School of Integrated Sciences for Life, ., Professor
Web Site
E-mail
sambongihiroshima-u.ac.jp
Other Contact Details
1-4-4,Kagamiyama,Higashi-Hiroshima, Japan
TEL : (+81)82-424-7924 FAX : (+81)82-424-7924
Self-introduction
Our group is now working on the stability, structure, and function of proteins that are important for microbial energy metabolism. A characteristic aspect of our research activity is comparison of the homologous proteins isolated from microorganisms living in extreme environments in which humans cannot live and those isolated from ‘normal’ environments. Why are we interested in extreme environments? Firstly, we would like to observe biological phenomena occurring at the edges of life, and understand their substantial features. Also, we want to know the essence of life. In addition, we will apply the outstanding ability of microbial energy metabolism in order to solve the energy problems that humans must solve.

Basic Information

Major Professional Backgrounds

  • 1992/06/01, 1995/02/28, University of Oxford, PostDoc
  • 1995/03/01, 2002/01/31, Osaka University, Joshu
  • 2002/02/01, 2002/03/31, Hiroshima University, Faculty of Applied Biological Science, Associate Professor
  • 2011/10/01, 2019/03/31, Hiroshima University, Graduate School of Biosphere Science, Professor

Educational Backgrounds

  • The University of Tokyo, Faculty of Agriculture, Japan, 1982/04, 1986/03
  • University of Tokyo, 1988/03
  • The University of Tokyo, Graduate School, Division of Agricultural Science, Japan, 1988/04, 1991/03

Academic Degrees

  • Master of Agriculture, The University of Tokyo
  • Doctor of Agriculture, The University of Tokyo

Educational Activity

  • 【Bachelor Degree Program】School of Applied Biological Science : Department of Applied Biological Science
  • 【Master's Program】Graduate School of Integrated Sciences for Life : Division of Integrated Sciences for Life : Program of Food and AgriLife Science
  • 【Doctoral Program】Graduate School of Integrated Sciences for Life : Division of Integrated Sciences for Life : Program of Food and AgriLife Science

In Charge of Primary Major Programs

  • Applied Molecular and Cellular Biology

Research Fields

  • Agricultural sciences;Agricultural chemistry;Applied microbiology
  • Agricultural sciences;Agricultural chemistry;Applied biochemistry
  • Agricultural sciences;Boundary agriculture;Applied molecular and cellular biology
  • Engineering;Process / Chemical engineering;Biofunction / Bioprocess
  • Biology;Basic biology;Ecology / Environment

Research Keywords

  • proton
  • energy conversion
  • cytochrome c
  • ATP synthase

Affiliated Academic Societies

  • Protein Science Society of Japan, 1996
  • Japan Society for Bioscience, Biotechnology, and Agrochemistry, 1986
  • Society for Biotechnology, Japan, 2013
  • The Japan Society of High Pressure Science and Technology, 2015/06
  • 広島県中小企業診断協会, 2009/03

Educational Activity

Course in Charge

  1. 2019, Liberal Arts Education Program1, 3Term, Food safety and health science
  2. 2019, Liberal Arts Education Program1, First Semester, Food culture
  3. 2019, Undergraduate Education, Intensive, Laboratory Work in General Chemistry
  4. 2019, Undergraduate Education, 2Term, Introduction to Microbiology
  5. 2019, Undergraduate Education, 3Term, Enzyme Protein Chemistry
  6. 2019, Undergraduate Education, 2Term, Microbial Biochemistry
  7. 2019, Undergraduate Education, Intensive, Laboratory Work in Microbial Biochemistry
  8. 2019, Undergraduate Education, Academic Year, Graduation Thesis
  9. 2019, Graduate Education (Master's Program) , Second Semester, Research for Academic Degree Dissertation
  10. 2019, Graduate Education (Doctoral Program) , First Semester, Exercises in Molecular and Applied Biosciences (B)
  11. 2019, Graduate Education (Doctoral Program) , Second Semester, Exercises in Molecular and Applied Biosciences (B)
  12. 2019, Graduate Education (Master's Program) , First Semester, Practice in Molecular and Applied Biosciences
  13. 2019, Graduate Education (Master's Program) , 2Term, Molecular Cell Science A
  14. 2019, Graduate Education (Master's Program) , 4Term, Molecular Cell Science B
  15. 2019, Graduate Education (Master's Program) , Second Semester, Seminar on biosphere sciences for international students
  16. 2019, Graduate Education (Master's Program) , 1Term, Special Lectures in Integrated Sciences for Life
  17. 2019, Graduate Education (Master's Program) , 1Term, Exercises in Food andAgriLife Science A
  18. 2019, Graduate Education (Master's Program) , 2Term, Exercises in Food andAgriLife Science A
  19. 2019, Graduate Education (Master's Program) , 3Term, Exercises in Food andAgriLife Science B
  20. 2019, Graduate Education (Master's Program) , 4Term, Exercises in Food andAgriLife Science B
  21. 2019, Graduate Education (Master's Program) , 2Term, Applied Molecular Cell Biology I
  22. 2019, Graduate Education (Master's Program) , 4Term, Applied Molecular Cell Biology II

Research Activities

Academic Papers

  1. The drug resistance of Hydrogenobacter thermophilus strain TK-6., FEMS Microbiol. Lett., 49, 179-182, 19881001
  2. Amino acid sequence of cytochrome c-552 from a thermophilic hydrogen-oxidizing bacterium Hydrogenobacter thermophilus., J. Bacteriol., 171, 65-69, 19890101
  3. Thermostability of cytochrome c-552 from a thermophilic hydrogen-oxidizing bacterium Hydrogenobacter thermophilus., Bio chemistry, 28, 9574-9578, 19891201
  4. Cloning and sequencing of the gene encoding cytochrome c-551 from Pseudomonas aeruginosa., FEBS Lett, 261, 196-198, 19900101
  5. Cloning, nucleotide sequence, and expression of the cytochrome c-552 gene from Hydrogenobacter thermophilus., Eur. J. Biochem., 198, 7-12, 19910601
  6. Crystallization and preliminary X-ray diffraction study of cytochrome c552 from Hydrogenobacter thermophilus., J. Biochem., 110, 854-855, 19910601
  7. A novel water-soluble Hantzsch 1, 4-dihydropyridine compound that functions in biological processes through NADH regeneration., J. Org. Chem., 67, 3499-3501, 20020501
  8. Thermodynamic characterization of variants of mesophilic cytochrome c and its thermophilic counterpart, PROTEIN ENGINEERING, 15(6), 455-461, 200206
  9. Cytochrome c from a thermophilic bacterium has provided insights into the mechanisms of protein maturation, folding, and stability, EUROPEAN JOURNAL OF BIOCHEMISTRY, 269(14), 3355-3361, 200207
  10. Influence of amino acid side chain packing on Fe-methionine coordination in thermostable cytochrome c, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 124(39), 11574-11575, 200210
  11. Thermostability of Pseudomonas hydrogenothermophila cytochrome c-552., Biosci. Biotechnol. Biochem., 56, 990-991, 19920601
  12. Regulation and sequence of the structural gene for cytochrome c552 from Escherichia coli: not a hexahaem but a 50 kDa tetrahaem nitrite reductase., Mol. Microbiol., 9, 1255-1265, 19930801
  13. Synthesis of holo Paracoccus denitrificans cytochrome c550 requires targeting to the periplasm whereas that of holo Hydrogenobacter thermophilus cytochrome c552 does not. Implication for c-type cytochrome biogenesis., FEBS Lett, 340, 65-70, 19940201
  14. A mutation blocking the formation of membrane or periplasmic endogenous and exogenous c-type cytochromes in Escherichia coli permits the cytoplasmic formation of Hydrogenobacter thermophilus holo cytochrome c552., FEBS Lett, 344, 207-210, 19940401
  15. Specific thiol compounds complement deficiency in c-type cytochrome biogenesis in Escherichia coli carrying a mutation in a membrane-bound disulphide isomerase-like protein., FEBS Lett, 353, 235-238, 19941001
  16. Production of recombinant cytochrome c-551 in a Pseudomonas aeruginosa mutant strain., J. Ferment. Bioeng., 79, 489-492, 19950501
  17. Cytochrome c550 expression in Paracoccus denitrificans strongly depends on growth condition: identification of promoter region for cycA by transcriptional start analysis., Microbiology, 142, 2577-2585, 19960501
  18. Alteration of haem-attachment and signal-cleavage sites for Paracoccus denitrificans cytochrome c550 probes pathway of c-type cytochrome biogenesis in Escherichia coli., Mol. Microbiol., 19, 1193-1204, 19960601
  19. Mutants of Escherichia coli lacking disulphide oxidoreductases DsbA and DsbB cannot synthesise an exogenous monohaem c-type cytochrome except in the presence of disulphide compounds., FEBS Lett, 398, 265-268, 19961101
  20. Caenorhabditis elegans cDNA for Menkes/Wilson disease gene homologue and its function in yeast CCC2 gene disruption mutant., J. Biochem., 121, 1169-1175, 19970601
  21. Contrasting routes of c-type cytochrome assembly in mitochondria, chloroplast and bacteria., Trends Biochem. Sci.=, 23, 103-108, 19980301
  22. Heterologous expression of Hydrogenobacter thermophilus cytochrome c-552 in the periplasm of Pseudomonas aeruginosa., J. Ferment. Bioeng., 85, 346-349, 19980301
  23. Analysis of functional domains of Wilson disease protein (ATP7B) in Saccharomyces cerevisiae., FEBS Lett, 428, 281-285, 19980601
  24. Essential Cys-Pro-Cys motif of Caenorhabditis elegans copper transport ATPase., Biosci. Biotechnol. Biochem., 62, 1258-1260, 19980601
  25. Solution structure of a thermostable cytochrome c-552 from Hydrogenobacter thermophilus determined by 1H-NMR., Biochemistry, 37, 9641-9649, 19980601
  26. Identification of the copper chaperone, CUC-1, in Caenorhabditis elegans: tissue specific co-expression with the copper transporting ATPase, CUA-1., FEBS Lett, 440, 141-146, 19981101
  27. Sensing of cadmium and copper ions by externally exposed ADL, ASE, and ASH neurons elicits avoidance response in Caenorhabditis elegans., NeuroReport, 10, 753-757, 19990301
  28. The gamma-subunit rotation and torque generation in F1-ATPase from wild-type or uncoupled mutant Escherichia coli., Proc. Natl. Acad. Sci. USA, 96, 7780-7784, 19990701
  29. Mechanical rotation of c subunit oligomer in ATP synthase (FoF1): Direct observation., Science, 286, 1722-1724, 19991101
  30. Stabilization of Pseudomonas aeruginosa cytochrome c-551 by systematic amino acid substitutions based on the structure of thermophilic Hydrogenobacter thermophilus cytochrome c-552., J. Biol. Chem., 274, 37533-37537, 19991201
  31. Caenorhabditis elegans senses protons through amphid chemosensory neurons: Proton signals elicit avoidance behavior., NeuroReport, 11, 2229-2232, 20000701
  32. A biological molecular motor, proton translocating ATP synthase: Multidisciplinary approach to a unique membrane enzyme., J. Bioenerg. Biomembr., 32, 441-448, 20001001
  33. Synthase (H+ ATPase): Coupling between catalysis, mechanical work, and proton translocation., Biochim= Biophys. Acta, 1458, 276-288, 20000601
  34. Biological nano motor FoF1 ATP synthase: Catalysis leading to c subunit oligomer rotation., Biochim= Biophys. Acta, 1459, 499-505, 20000701
  35. Selected mutations in a mesophilic cytochrome c confer the stability of a thermophilic counterpart., J. Biol. Chem., 275, 37824-37828, 20001201
  36. ATP synthase F1 sector rotation. Defective torque generation in the b subunit Ser-174 to Phe mutant and its suppression by second mutations., J. Biol. Chem., 276, 47508-47511, 20011201
  37. Relationship between redox function and protein stability of cytochrornes c, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 125(45), 13650-13651, 200311
  38. Effects of axial methionine coordination on the in-plane asymmetry of the heme electronic structure of cytochrome c, JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 9(6), 733-742, 200409
  39. Complete thermal-unfolding profiles of oxidized and reduced cytochromes c, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 126(45), 14684-14685, 200411
  40. Five amino acid residues responsible for the high stability of Hydrogenobacter thermophilus cytochrome c(552) - Reciprocal mutation analysis, JOURNAL OF BIOLOGICAL CHEMISTRY, 280(7), 5527-5532, 200502
  41. Cloning, expression, crystallization and preliminary X-ray characterization of cytochrome c(552) from a moderate thermophilic bacterium, Hydrogenophilus thermoluteolus, ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS, 61, 395-398, 200504
  42. Control of the redox potential of Pseudomonas aeruginosa cytochrome c(551) through the Fe-Met coordination bond strength and pK(a) of a buried heme propionic acid side chain, BIOCHEMISTRY, 44(14), 5488-5494, 200504
  43. Unexpected elevated production of Aquifex aeolicus cytochrome c(555) in Escherichia coli cells lacking disulfide oxidoreductases, BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 69(7), 1418-1421, 200507
  44. Characterization of non-native heme coordination structures emerging upon guanidine hydrochloric acid-induced unfolding of Pseudomonas aeruginosa ferricytochrome c(551), BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 78(11), 2019-2025, 200511
  45. Why isn't 'standard' heme good enough for c-type and d(1)-type cytochromes?, DALTON TRANSACTIONS, 3410-3418, 2005
  46. Structure of cytochrome c552 from a moderate thermophilic bacterium, Hydrogenophilus thermoluteolus: Comparative study on the thermostability of cytochrome c, biochemistry, 45, 6115-6123, 20060501
  47. Further enhancement of the thermostability of Hydrogenobacter thermophilus cytochrome c(552), BIOCHEMISTRY, 45(36), 11005-11011, 200609
  48. Thiosulfate oxidation by a moderately thermophilic hydrogen-oxidizing bacterium, Hydrogenophilus thermoluteolus, ARCHIVES OF MICROBIOLOGY, 188(2), 199-204, 200708
  49. Roles of a short connecting disulfide bond in the stability and function of psychrophilic Shewanella violacea cytochrome c(5)*, EXTREMOPHILES, 11(6), 797-807, 200711
  50. Stabilization mechanism of cytochrome c(552) from a moderately thermophilic bacterium, Hydrogenophilus thermoluteolus, BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 72(8), 2103-2109, 200808
  51. Stability enhancement of cytochrome c through heme deprotonation and mutations, BIOPHYSICAL CHEMISTRY, 139(1), 37-41, 200901
  52. Correlation between the Stability and Redox Potential of Three Homologous Cytochromes c from Two Thermophiles and One Mesophile, BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 73(2), 366-371, 200902
  53. Effects of Cysteine Introduction into Three Homologous Cytochromes c, BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 73(5), 1227-1229, 200905
  54. Hyperstability and crystal structure of cytochrome c(555) from hyperthermophilic Aquifex aeolicus, ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 65, 804-813, 200908
  55. Heme Is Not Required for Aquifex aeolicus Cytochrome c(555) Polypeptide Folding, BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 73(9), 2022-2025, 200909
  56. Comparative Analysis of Highly Homologous Shewanella Cytochromes c(5) for Stability and Function, BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 74(5), 1079-1083, 201005
  57. Hydration analysis of Pseudomonas aeruginosa cytochrome c551 upon acid unfolding by dielectric relaxation spectroscopy, BIOPHYSICAL CHEMISTRY, 151(3), 160-169, 201010
  58. Effects of heme on the thermal stability of mesophilic and thermophilic cytochromes c: Comparison between experimental and theoretical results, JOURNAL OF CHEMICAL PHYSICS, 134(2), 201101
  59. Conferment of Folding Ability to a Naturally Unfolded Apocytochrome c through Introduction of Hydrophobic Amino Acid Residues, BIOCHEMISTRY, 50(12), 2313-2320, 201103
  60. Piezotolerance of the Respiratory Terminal Oxidase Activity of the Piezophilic Shewanella violacea DSS12 as Compared with Non-Piezophilic Shewanella Species, BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 75(5), 919-924, 201105
  61. Heterologous synthesis of cytochrome c ' by Escherichia coli is not dependent on the System I cytochrome c biogenesis machinery, FEBS JOURNAL, 278(13), 2341-2348, 201107
  62. Thermal Stability of Cytochrome c(5) of Pressure-Sensitive Shewanella livingstonensis, BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 75(9), 1859-1861, 201109
  63. Structure of cytochrome c552 from a moderate thermophilic bacterium, Hydrogenophilus thermoluteolus: Comparative study on the thermostability of cytochrome c, BIOCHEMISTRY, 45(19), 6115-6123, 200605
  64. Influence of a single amide group on the redox function of Pseudomonas aeruginosa cytochrome c(551), CHEMISTRY LETTERS, 35(5), 528-529, 200605
  65. Long-Term Observation of Fluorescence of Free Single Molecules To Explore Protein-Folding Energy Landscapes, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 134(28), 11525-11532, 201207
  66. Transcriptome Analyses of Metabolic Enzymes in Thiosulfate- and Hydrogen-Grown Hydrogenobacter thermophilus Cells, BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 76(9), 1677-1681, 201209
  67. Hydration-State Change of Horse Heart Cytochrome c Corresponding to Trifluoroacetic-Acid-Induced Unfolding, BIOPHYSICAL JOURNAL, 104(1), 163-172, 201301
  68. Oxidative phosphorylation in a thermophilic, facultative chemoautotroph, Hydrogenophilus thermoluteolus, living prevalently in geothermal niches, ENVIRONMENTAL MICROBIOLOGY REPORTS, 5(2), 235-242, 201304
  69. Regulation of Cytochrome c- and Quinol Oxidases, and Piezotolerance of Their Activities in the Deep-Sea Piezophile Shewanella violacea DSS12 in Response to Growth Conditions, BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 77(7), 1522-1528, 201307
  70. High Thermal Stability and Unique Trimer Formation of Cytochrome c ' from Thermophilic Hydrogenophilus thermoluteolus, BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 77(8), 1677-1681, 201308
  71. Constant Enthalpy Change Value during Pyrophosphate Hydrolysis within the Physiological Limits of NaCl, JOURNAL OF BIOLOGICAL CHEMISTRY, 288(41), 29247-29251, 201310
  72. High stability of apo-cytochrome c' from thermophilic Hydrogenophilus thermoluteolus, BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 78(7), 1191-1194, 201407
  73. Correlation between the optimal growth pressures of four Shewanella species and the stabilities of their cytochromes c5, Extremophiles, 18(3), 617-627, 201405
  74. Thermal stability of cytochrome c ' from mesophilic Shewanella amazonensis, BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 79(7), 1125-1129, 201507
  75. Correlation between the Optimal Growth Pressures of Shewanella species and the Stabilities of their Proteins, 25(2), 136-142, 20150601
  76. Structural and functional insights into thermally stable cytochrome c' from a thermophile, Protein Science, 26, 737-748, 20170118
  77. Difference in NaCl tolerance of membrane-bound 5'-nucleotidases purified from deep-sea and brackish water Shewanella species., Extremophiles, 21(2), 357-368, 20170103
  78. Pyrophosphate hydrolysis in the extremely halophilic archaeon Haloarcula japonica is catalyzed by a single enzyme with a broad ionic strength range., Extremophiles, 21, 471-477, 20170217
  79. Pseudomonas aeruginosa cytochrome c551 denaturation by five systematic urea derivatives that differ in the alkyl chain length, Bioscience, Biotechnology, and Biochemistry,, 81(7), 1274-1278, 2017
  80. Pseudomonas aeruginosa cytochrome c(551) denaturation by five systematic urea derivatives that differ in the alkyl chain length, BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 81(7), 1274-1278, 2017
  81. Stabilization of mesophilic Allochromatium vinosum cytochrome c′ through specific mutations modeled by a thermophilic homologue, Biosci. Biotech. Biochem., 82(2), 304-311
  82. Gamma-aminobutyric acid fermentation with date residue by a lactic acid bacterium, Lactobacillus brevis, Journal of Bioscience and Bioengineering, 125(3), 316-319, 20180309
  83. Stabilization of mesophilic Allochromatium vinosum cytochrome c through specific mutations modeled by a thermophilic homologue, BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 82(2), 304-311, 2018
  84. Gamma-aminobutyric acid fermentation with date residue by a lactic acid bacterium, &ITLactobacillus brevis&IT, JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 125(3), 316-319, MAR 2018
  85. Commonly stabilized cytochromes c from deep-sea Shewanella and Pseudomonas, BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 82(5), 792-799, 2018
  86. Stability of cytochromes c' from psychrophilic and piezophilic Shewanella species: Implications for complex multiple adaptation to low temperature and high hydrostatic pressure., Extremophiles, 23(2), 239-248, 20190128
  87. Conferment of CO-Controlled Dimer­Monomer Transition Property to Thermostable Cytochrome c' by Mutation in the Subunit­Subunit Interface., BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 92, 702-709, 20190307
  88. One fold, two functions: cytochrome P460 and cytochrome c0-b from the methanotroph Methylococcus capsulatus (Bath), Chemical Science, 10, 3031-3041, 20190201
  89. Response of neutrophilic Shewanella violacea to acid stress: growth rate, organic acid production, and gene expression, Extremophiles, 23, 319-326, 20190501
  90. Differences in biochemical properties of two 5′-nucleotidases from deep- and shallow-sea Shewanella species under various harsh conditions., Biosci. Biotech. Biochem., 83(6), 1085-1093, 20190513

Publications such as books

  1. 2000/10, Rotational catalysis by F-type ATPase, Elsevier Science B. V., 2000, 10, 英語, 7
  2. 2018/06/01, Extremophilic Enzymes Related to Energy Conversion, ATP加水分解のエネルギーが蛋白質分子の機能発現にどうかかわるのか、その最新の知見をまとめた専門書。, ATP加水分解のエネルギーが蛋白質分子の機能発現にどうかかわるのか、その最新の知見をまとめた専門書。, The Role of Water in ATP Hydrolysis Energy Transduction by Protein Machinery, ATP, Springer Singapore, 2018, 06, 英語, satoshi wakai, yoshihiro sambongi, 978-981-10-8458-4, 353, 275-302
  3. 2018/06, The Role of Water in ATP Hydrolysis Energy Transduction by Protein Machinery, This book introduces recent progress in biological energetics from ATP hydrolysis to molecular machineries. The role of water is now recognized to be essential in biological molecular energetics. Although energetics is a rather distant field to many biologists, any working models for protein machineries such as protein motors, transporters, and other enzymes must be consistent with their energetics. Therefore, the book is intended to help scientists build systematic models of biomolecular functions based on three categories: (1) ATP hydrolysis reactions including ionic hydration and protonation–deprotonation of biomolecules, (2) protein–ligand/protein–protein interactions including hydration–dehydration processes, and (3) functioning mechanisms of protein machineries based on water functions., This book introduces recent progress in biological energetics from ATP hydrolysis to molecular machineries. The role of water is now recognized to be essential in biological molecular energetics. Although energetics is a rather distant field to many biologists, any working models for protein machineries such as protein motors, transporters, and other enzymes must be consistent with their energetics. Therefore, the book is intended to help scientists build systematic models of biomolecular functions based on three categories: (1) ATP hydrolysis reactions including ionic hydration and protonation–deprotonation of biomolecules, (2) protein–ligand/protein–protein interactions including hydration–dehydration processes, and (3) functioning mechanisms of protein machineries based on water functions., Extremophilic Enzymes Related to Energy Conversion, extremophile, enzyme, energy conversion, Springer Singapore, 2018, 06, 英語, Satoshi Wakai, Yoshihiro Sambongi, 978-981-10-8459-1, 353, 275-302

Invited Lecture, Oral Presentation, Poster Presentation

  1. EVALUATION OF DIAGNOSTIC METHODS FOR MICROBIOLOGICALLY INFLUENCED CORROSION, Satoshi Wakai, Sotaro Fujii, Akihiro Abe, Misa Masanari, Tomoko Suda, Yasuyoshi Tomoe, and Yoshihiro Sambongi, 17th International Congress on Marine Corrosion and Fouling, 2014/07/08, Without Invitation
  2. Correlation between the optimal growth pressures of four Shewanella species and the stabilities of their cytochromes c, Misa Masanari and Yoshihiro Sambongi, 1st SPIRITS Workshop, 2014/09/02, With Invitation
  3. Thermal stability and stabilization mechanism of cytochrome c' from thermophilic Hydrogenophilus thermoluteolus, Sotaro Fujii, Misa Masanari, Masaru Yamanaka, Satoshi Wakai, Kazuki Kawahara, Hiroya Oki, Tadayasu Ohkubo, Takahiro Maruno, Yoshihiro Sambongi, 10th International Congress on Extremophiles, 2014/09/10, With Invitation
  4. Correlation between the optimal growth pressures of four Shewanella species and the stabilities of their cytochromes c, Misa Masanari ? Satoshi Wakai ? Chiaki Kato ? Yoshihiro Sambongi, 10th International Congress on Extremophiles, 2014/09/10, Without Invitation
  5. Proteins designed by extremophiles, Yoshihiro Sambongi, 2015/09/15, With Invitation
  6. Shewanella violacea由来シトクロムcの構造,変異導入による安定性の変化, 政成 美沙,河原 一樹1,沖 大也,大久保 忠恭,三本木 至宏, 日本農芸化学会中四国支部第44回講演会, 2016/01/23, Without Invitation, 日本農芸化学会中四国支部, 岡山
  7. 好熱菌由来シトクロムc’への変異導入による熱安定性変化, 山根 大典,藤井 創太郎,三本木 至宏,山中 優,丸野 孝浩, 日本農芸化学会中四国支部第44回講演会, 2016/01/23, Without Invitation, 日本農芸化学会中四国支部, 岡山
  8. 酸性環境で高発現する耐酸性ユスリカ幼虫由来遺伝子の網羅的解析, 藤井創太郎,河合幸一郎,三本木至宏, 日本農芸化学会中四国支部第44回講演会, 2016/01/23, Without Invitation, 日本農芸化学会中四国支部, 岡山
  9. 好熱菌Hydrogenophilus thermoluteolus由来シトクロムc'の構造と CO・NO結合能に関する環境適応能の解析, 藤井創太郎、山根大典、山中優、丸野孝弘、三本木至宏, 日本農芸化学会中四国支部第45回講演会, 2016/06/11, Without Invitation, 日本農芸化学会中四国支部, 香川
  10. Comparative study on stabilization mechanism of monomeric cytochrome c5 from deep-sea piezophilic Shewanella violacea, Sotaro Fujii, Misa Masanari, and Yoshihiro Sambongi, 5th International Workshop on Deep sea Microbiology, 2016/09/10, With Invitation, International Workshop on Deep sea Microbiology, Kyoto
  11. Difference in salt stability of membrane-bound 5’-nucleotidases purified from piezophilic, moderately-halophilic and piezosensitive, non-halophilic Shewanella species., Takaaki Kuribayashi, Sotaro Fujii, Satoshi Wakai and Yoshihiro Sambongi, 5th International Workshop on Deep sea Microbiology, 2016/09/11, Without Invitation, International Workshop on Deep sea Microbiology, Kyoto
  12. Shewanella属細菌由来シトクロムc'の熱安定性の比較研究, 加藤雄基,藤井創太郎,栗林貴明,大前英司,三本木至宏, 日本農芸化学会中四国支部第46回講演会, 2016/09/16, Without Invitation, 日本農芸化学会中四国支部, 高知
  13. Functional and Structural Molecular Adaptation Strategy in Cytochrome c' from Thermophilic Hydrogenophilus thermoluteolus, Sotaro Fujii1, Daisuke Yamane, Yoshihiro Sambingi, the 11th International Congress on Extremophiles, 2016/09/12, Without Invitation, the 11th International Congress on Extremophiles, Kyoto
  14. 酸性ユスリカChironomus sulfurosus幼虫の酸性条件下で誘導される発現遺伝子の網羅的解析, 藤井創太郎, 河合幸一郎, 三本木至宏, 極限環境生物学会2016年度(第17回)年会, 2016/11/25, Without Invitation, 極限環境生物学会, 東京
  15. 変性剤の疎水基がシトクロムc変性に及ぼす影響, 小林 伸弥,藤井 創太郎,政成 美沙,松林 伸幸,三本木 至宏, 農芸化学中四国支部第47回講演会, 2017/01/28, Without Invitation, 農芸化学中四国支部, 島根
  16. 耐塩性 ATP 分解酵素の性質と応用, 三本木至宏, 「水和とATPエネルギー」研究会, 2017/03/05, With Invitation, 「水和とATPエネルギー」研究会, 仙台
  17. 広いイオン強度幅でのピロリン酸加水分解と反応熱, 若井暁、三本木至宏, 「水和とATPエネルギー」研究会, 2017/03/05, With Invitation, 「水和とATPエネルギー」研究会, 仙台
  18. Shewanella 属細菌由来シトクロムc′ の安定性の比較研究, 須賀朝子,加藤雄基,藤井創太郎,三本木至宏, 日本農芸化学会2017年度京都大会, 2017/03/18, Without Invitation, 日本農芸化学会, 京都
  19. 金属腐食を誘導する微生物群集と誘導しない微生物群集, 若井暁、藤井創太郎、宮永一彦、丹治保典、三本木至宏, 第2回 デザイン生命工学研究会, 2017/03/21, Without Invitation, デザイン生命工学研究会, 神戸
  20. Metallic iron corrosion by microorganisms living in oil-storage tanks, Satoshi WAKAI, Sotaro FUJII, Yasuyoshi TOMOE, Kazuhiko MIYANAGA, Yasunori TANJI, Yoshihiro SAMBOMGI, ASM Microbe 2017, 2017/06/03, Without Invitation, ASM, New Orleans
  21. Shewanella violacea genes expressed under acidic and neutral conditions, Lisa Lisdiana, Sotaro Fujii, Mizuki Fukunaga, Yoshihiro Sambongi, 農芸化学中四国支部第48回講演会, 2017/06/17, Without Invitation, 農芸化学中四国支部, 徳島
  22. 耐熱性シトクロムc′の2量体界面残基置換によるCO応答性4次構造変化の付与, 中山諒子、山中優、藤井創太郎、越澤大典、三本木至宏、廣田俊, 第17回日本蛋白質科学会, 2017/06/21, Without Invitation, 日本蛋白質科学会, 仙台
  23. 耐塩性ヌクレオチダーゼを用いた調味料の旨味成分増強に関する研究, 三本木至宏, 公益財団法人ソルト・サイエンス研究財団第29回助成研究発表会, 2017/07/19, With Invitation, 公益財団法人ソルト・サイエンス研究財団, 東京
  24. 高度好塩性Haloarcula japonica由来ピロリン酸加水分解酵素の 溶媒和シミュレーション, 若井 暁、三本木 至宏, 日本Archaea 研究会 第30 回講演会, 2017/09/01, With Invitation, 日本Archaea 研究会, 仙台
  25. Lactobacillus brevisを用いたGABA含有デーツ残渣発酵エキスの開発, 長谷川桃子,越澤大典,船戸耕一,吉田充史,三本木至宏, 第69回日本生物工学会大会(2017), 2017/09/12, Without Invitation, 日本生物工学会, 東京
  26. 異なるCO応答性を示す相同シトクロムc′の変異導入解析, 中山諒子,山中優,藤井創太郎,越澤大典,三本木至宏,廣田俊, 関西・中四国・西日本支部2017年度合同大阪大会, 2017/09/22, Without Invitation, 日本農芸化学会, 大阪
  27. 深海性Shewanella属細菌由来シトクロムc′の構造と熱安定性, 須賀朝子, 加藤雄基, 藤井創太郎, 三本木至宏, 関西・中四国・西日本支部2017年度合同大阪大会, 2017/09/22, Without Invitation, 日本農芸化学会, 大阪
  28. 深海性Shewanella属細菌由来の5’-ヌクレオチダーゼの重金属耐性, 藤森貴子,藤井創太郎,栗林貴明,三本木至宏, 関西・中四国・西日本支部2017年度合同大阪大会, 2017/09/22, Without Invitation, 日本農芸化学会, 大阪
  29. 深海性Shewanella属細菌由来シトクロムc′の変異導入による安定性比較, 須賀朝子, 加藤雄基, 藤井創太郎, 三本木至宏, 特殊環境微生物セミナー2017, 2017/10/06, Without Invitation, 特殊環境微生物セミナー2017実行委員会, 広島
  30. 深海細菌由来シトクロムcの安定化機構と圧力依存性, 藤井創太郎, 政成(藤井)美沙, 三本木至宏, 特殊環境微生物セミナー2017, 2017/10/06, Without Invitation, 特殊環境微生物セミナー2017実行委員会, 広島
  31. 重金属イオンがShewanella属細菌由来の5’-ヌクレオチダーゼに与える影響, 藤森貴子, 藤井創太郎, 栗林貴明, 三本木至宏, 特殊環境微生物セミナー2017, 2017/10/06, Without Invitation, 特殊環境微生物セミナー2017実行委員会, 広島
  32. デトリタス食性カイアシ類と海洋細菌との栄養学的関係, 平野 勝士, 大塚 攻, 高田 健太郎, 福島 英人, 中井 敏博, 三本木 至宏, 特殊環境微生物セミナー2017, 2017/10/06, Without Invitation, 特殊環境微生物セミナー2017実行委員会, 広島
  33. 深海性Shewanella violacea DSS12株由来5'-ヌクレオチダーゼ活性への塩の影響, 藤森貴子、藤井創太郎、三本木至宏, 極限環境生物学会2017年度(第18回)年会, 2017/11/12, Without Invitation, 極限環境生物学会, つくば
  34. 深海性Shewanella benthicaDB6705由来シトクロムc′の安定化機構の解明, 須賀朝子、藤井創太郎、三本木至宏, 極限環境生物学会2017年度(第18回)年会, 2017/11/12, Without Invitation, 極限環境生物学会, つくば
  35. GABA production with date residue, Yoshihiro Sambongi, Triple Helix International Seminar: Linking University-Industry-Government, 2018/03/09, With Invitation, Guanajuato University and Hiroshima University, Guanajuato, Mexico
  36. メキシコでの産学官連携会議をおえて, 三本木 至宏, 広島大学フェニックス・サロン「ラテンアメリカ」, 2018/03/20, With Invitation, 広島大学, 広島
  37. 好熱菌および好冷菌由来シトクロムc′のNO親和性の解析, 藤井創太郎、越澤大典、小林悟、三本木至宏, 藤井創太郎、越澤大典、小林悟、三本木至宏, 日本農芸化学会中四国支部会第51回講演会, 2018/06/16, Without Invitation, 日本農芸化学会中四国支部会, 山口
  38. 好熱菌Thermochromatium tepidum由来シトクロムc′の熱安定性と ガス結合能に関する研究, 小林 悟,藤井創太郎,越澤大典,三本木至宏, 小林 悟,藤井創太郎,越澤大典,三本木至宏, 日本農芸化学会中四国支部会第51回講演会, 2019/06/16, Without Invitation, 日本農芸化学会中四国支部会, 山口
  39. 深海性二枚貝共生細菌由来の硫黄酸化酵素SoxAXの機能と熱安定性の解析, 染井希美子、藤井創太郎、加藤千明,吉田尊雄、三本木至宏, 染井希美子、藤井創太郎、加藤千明,吉田尊雄、三本木至宏, 日本農芸化学会中四国支部会第51回講演会, 2018/06/16, Without Invitation, 日本農芸化学会中四国支部会, 山口
  40. 耐熱性シトクロムc ′への CO 応答性四次構造変化の付与と多量化, 山中優 、中山諒子、 藤井創太郎、越澤大典、若井暁、三本木至宏、廣田俊, 山中優 、中山諒子、 藤井創太郎、越澤大典、若井暁、三本木至宏、廣田俊, 日本化学会 第98春季年会 (2018), 2018/03/20, Without Invitation, 日本化学会, 東京
  41. ガー・レイノルズに学ぶビジュアル ・コミュニケーション, 三本木至宏, なし, 企業内診断士の会 夏季交流会, 2018/07/21, With Invitation, 企業内診断士の会, 広島
  42. Microbial corrosion induced by co-existence of Acetobacterium sp. and Desulfovibrio sp. enriched from bottom water in oil-storage tank, Satoshi WAKAI, Sotaro FUJII, Tomoe YASUYOSHI, Kazuhiko MIYANAGA, Yasunori TANJI, and Yoshihiro SAMBONGI, Satoshi WAKAI, Sotaro FUJII, Tomoe YASUYOSHI, Kazuhiko MIYANAGA, Yasunori TANJI, and Yoshihiro SAMBONGI, Eurocorr2018, 2018/09/10, Without Invitation, Eurocorr2018, ポーラインド
  43. 好熱菌および好冷菌由来のシトクロムc′の熱安定性とNO親和性の関係, 藤井創太郎、須賀朝子、小林悟、三本木至宏, 極限環境生物学会2018年度(第19回)年会, 1812/08, Without Invitation, 極限環境生物学会, 松江
  44. 酸耐性ユスリカ幼虫内の微生物叢の解析, 藤井創太郎,河合幸一郎,三本木至宏, 日本農芸化学会中四国支部会第53回講演会, 2019/01/26, Without Invitation, 日本農芸化学会中四国支部, 高知
  45. Conferment of CO-Controlled Dimer–Monomer Transition Property to Thermostable Cytochrome c' by Mutation in the Subunit Interface, Masaru Yamanaka, Ryoko Nakayama, Sotaro Fujii, Satoshi Wakai, Yoshihiro Sambongi, Shun Hirota, Masaru Yamanaka, Ryoko Nakayama, Sotaro Fujii, Satoshi Wakai, Yoshihiro Sambongi, Shun Hirota, 15th International Symposium on Applied Bioinorganic Chemistry, 2019/06/02, Without Invitation, 15th International Symposium on Applied Bioinorganic Chemistry Organizing Committee, Nara
  46. 高濃度MgCl2がShewanella violaceaの生育及び5′-ヌクレオチダーゼの活性に与える影響, 猪原雅司,藤森貴子 ,藤井創太郎,三本木至宏, 猪原雅司,藤森貴子 ,藤井創太郎,, 日本農芸化学会中四国支部会第54回講演会, 2019/06/01, Without Invitation, 日本農芸化学会中四国支部, 岡山
  47. Isovaleric acid production as the response to acid stress in Shewanella violacea, Lisa Lisdiana, Hisashi Ômura, Sotaro Fujii, and Yoshihiro Sambongi, Lisa Lisdiana, Hisashi Ômura, Sotaro Fujii,, 日本農芸化学会中四国支部会第54回講演会, 2019/06/01, Without Invitation, 日本農芸化学会中四国支部, 岡山
  48. 深海性細菌Shewanella benthica DB6705由来シトクロムc′の安定化機構の解明, 坂口陸,須賀朝子,藤井創太郎,三本木至宏, 坂口陸,須賀朝子,藤井創太郎, 日本農芸化学会中四国支部会第54回講演会, 2019/06/01, Without Invitation, 日本農芸化学会中四国支部, 岡山
  49. Thermal stability of cytochrome c’ from thermophilic Thermus thermophilus, Sotaro Fujii, Yoshihiro Smabongi, 15th International Congress on Thermophiles, 2019/09/02, Without Invitation, International Congress on Thermophiles, Fukuoka, Japan

Social Activities

History as Committee Members

  1. 西条農業高等学校 学校運営協議会, 2019/08, 2020/03, 西条農業高等学校

Organizing Academic Conferences, etc.

  1. 2003/08
  2. 2004/03
  3. 2015/03
  4. 日本農芸化学会中四国支部第50回記念講演会, 2018/01, 2018/01

History as Peer Reviews of Academic Papers

  1. 2014, kagaku to seibutu, 7
  2. 2014, Bioscience, Biotechnology, and Biochemistry, Peer reviewer, 2