MINORU FUJISHIMA

Last Updated :2018/06/01

Affiliations, Positions
Graduate School of Advanced Sciences of Matter, ., Professor
E-mail
fuji@hiroshima-u.ac.jp

Basic Information

Academic Degrees

  • Ph.D., The University of Tokyo

Research Fields

  • Engineering;Electrical and electronic engineering;Measurement engineering

Research Keywords

  • millimeter wave
  • terahrtz
  • CMOS
  • device modeling
  • circuit design
  • microwave
  • wireless
  • sensing

Educational Activity

Course in Charge

  1. 2018, Undergraduate Education, Intensive, Integrated Circuits Fundamentals
  2. 2018, Undergraduate Education, 2Term, Introduction to Semiconductor Devices and Circuits
  3. 2018, Graduate Education (Master's Program) , First Semester, Special Lecture on Advanced Sciences of Matter
  4. 2018, Graduate Education (Master's Program) , Year, Advanced Study in Semiconductor Electronics and Integration Science I
  5. 2018, Graduate Education (Master's Program) , Academic Year, Advanced Study in Semiconductor Electronics and Integration Science I
  6. 2018, Graduate Education (Master's Program) , 4Term, Analog Integrated Circuits A
  7. 2018, Graduate Education (Master's Program) , Intensive, Advanced Study in Semiconductor Electronics and Integration Science I
  8. 2018, Graduate Education (Doctoral Program) , Academic Year, Advanced Study in Semiconductor Electronics and Integration ScienceII

Research Activities

Academic Papers

  1. 140 GHz CMOS amplifier with group delay variation of 10.2 ps and 0.1 dB bandwidth of 12 GHz, IEICE ELECTRONICS EXPRESS, 8(14), 1192-1197, 20110725
  2. New Performance Indicators of Metal-Oxide-Semiconductor Field-Effect Transistors for High-Frequency Power-Conscious Design, JAPANESE JOURNAL OF APPLIED PHYSICS, 51(2), 2012
  3. Estimation of cotunneling in single-electron logic and its suppression, Japanese Journal of Applied Physics, 35(2B), 1146-1150, 19960201
  4. Correlated electron-hole transport in capacitively-coupled one-dimensional tunnel junction arrays, Japanese Journal of Applied Physics, 36(6B), 4166-4171, 19970601
  5. Proposal of a Schottky-barrier SET aiming at a future integrated device, IEICE Transactions on Electronics, E80-C(7), 881-885, 19970701
  6. Single-electron circuit simulation, IEICE Transactions on Electronics, E81-C(1), 21-29, 19980101
  7. Circuit simulator aiming at single-electron integration, Japanese Journal of Applied Physics, 37(3B), 1478-1482, 19980301
  8. Scaling of the single-electron tunnelling current through ultrasmall tunnel junctions, Journal of Physics: Condensed Matter, 12(32), 7223-7228, 20000801
  9. Charging and retention times in silicon-floating-dot-single-electron memory, Japanese Journal of Applied Physics, 40(3B), 2041-2045, 20010301
  10. Cotunneling-tolerant single-electron logic, Extended Abstracts of the 1995 International Conference on Solid State Devices and Materials (SSDM), 207-209, 19950901
  11. 1Gbps/ch 60GHz CMOS Multichannel Millimeter-Wave Repeater, 2010 Symposium on VLSI Circuits, 93-94, 20100601
  12. D-band 3.6-dB-insertion-loss ASK modulator with 19.5-dB isolation in 65-nm CMOS technology, 2010 Asia-Pacific Microwave Conference Proceedings (APMC), 1853-1856, 20101201
  13. 116GHz CMOS injection locked oscillator with 99.3dBc/Hz at 1MHz offset phase noise, 2010 Asia-Pacific Microwave Conference Proceedings (APMC), 786-789, 20101201
  14. 1Gbps/ch 60GHz CMOS Multichannel Millimeter-Wave Repeater, 2010 Symposium on VLSI Circuits, 93-94, 20100601
  15. 2Gbps CMOS amplitude-shift-keying demodulator with input sensitivity of 33dBm, 2010 European Microwave Conference (EuMC), 268-271, 20101001
  16. 115GHz CMOS VCO with 4.4% Tuning Range, the 4th European Microwave Integrated Circuits Conference, 128-131, 20090901
  17. 12.5mW 48GHz CMOS Image-Rejection Filter with 1GHz Tuning range, the 4th European Microwave Integrated Circuits Conference, 483-486, 20090901
  18. 24GHz 1.89mW 12x CMOS Frequency Multiplier Using Pulse-Injected Oscillator, the 4th European Microwave Integrated Circuits Conference, 180-183, 20090901
  19. 49 mW 5 Gbit/s CMOS receiver for 60 GHz impulse radio, Electronics Letters, vol 45(Issue 17), 889-890, 20090801
  20. 50 GHz S-shaped rat-race balun with 1.4 dB insertion loss in a wafer-level chip-size package process, International Journal of Microwave and Wireless Technologies, 347-352, 20090801
  21. A 110GHz Inductor-less CMOS Frequency Divider, 2009 IEEE Asian Solid-State Circuits Conference, 61-64, 20091101
  22. Algorithmic Design Flow for Millimeter-Wave CMOS Low-Noise Amplifiers, 2009 Thai-Japan Microwave, 該当なし, 20090801
  23. Analysis of de-embedding error cancellation in cascade circuit design, IEICE TRANSACTIONS on Electronics, E94-C(10), 1641-1649, 20111001
  24. Device-modeling techniques for high-frequency circuits operated at over 100 GHz, IEICE TRANSACTIONS on Electronics, E94-C(4), 589-597, 20110401
  25. Prospective Silicon Applications and Technologies in 2025, IEICE TRANSACTIONS on Electronics, E94-C(4), 386-393, 20110401
  26. Characteristic impedance determination technique for CMOS on-wafer transmission line with large substrate loss, 79th Automatic RF Techniques Group Conf. (ARFTG), 2012(-), -, 20120601
  27. On the choice of cascade de-embedding methods for on-wafer S-parameter measurement, International Symposium on Radio-Frequency Integration Technology (RFIT), 2012(-), 137-139, 20121101
  28. On the length of THRU standard for TRL de-embedding on Si substrate above 110 GHz, International Conference on Microelectronic Test Structures (ICMTS), 2013(-), 81-86, 20130301
  29. 118GHz CMOS amplifier with group delay variation of 11.2ps and 3dB bandwidth of 20.4GHz, 2012 International Meeting for Future of Electron Devices Kansai (IMFEDK), 1-2, 20120501
  30. Prospective Silicon Applications and Technologies in 2025, IEICE Trans. Electron., 94(4), 386-393, 20110401
  31. Device Modeling Techniques for High-Frequency Circuits Design Using Bond-Based Design at over 100GHz, IEICE Trans. Electron., 94(4), 589-597, 20110401
  32. Analysis of De-Embedding Error Cancellation in Cascade Circuit Design, IEICE Trans. Electron., 94(10), 1641-1649, 20111001
  33. Bias-Voltage-Dependent Subcircuit Model for Millimeter-Wave CMOS Circuit, IEICE Trans. Electron., 95(6), 1077-1085, 20120601
  34. A 120-GHz Transmitter and Receiver Chipset with 9-Gbps Data Rate Using 65-nm CMOS Technology, IEICE Trans. Electron., 95(7), 1154-1162, 20120701
  35. A 120 GHz/140 GHz Dual-Channel OOK Receiver Using 65nm CMOS Technology, IEICE Trans. Fundamentals, 96(2), 486-493, 20130201
  36. 98 mW 10 Gbps Wireless Transceiver Chipset With D-Band CMOS Circuits, IEEE JOURNAL OF SOLID-STATE CIRCUITS, 48(10), 2273-2284, 2013
  37. Modeling of Short-Millimeter-Wave CMOS Transmission Line with Lossy Dielectrics with Specific Absorption Spectrum, IEICE TRANSACTIONS ON ELECTRONICS, E96C(10), 1311-1318, 2013
  38. 135 GHz 98 mW 10 Gbps CMOS Amplitude Shift Keying Transmitter and Receiver Chipset, IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, E97A(1), 86-93, 2014
  39. 9 dB NF and +11 dBm OIP3 CMOS Single Conversion Front-End for a Satellite Low-Noise Block Down-Converter, IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, E97A(1), 101-108, 2014
  40. E-Band 65 nm CMOS Low-Noise Amplifier Design Using Gain-Boost Technique, IEICE TRANSACTIONS ON ELECTRONICS, E97C(6), 476-485, 2014
  41. 8-GHz Locking Range and 0.4-pJ Low-Energy Differential Dual-Modulus 10/11 Prescaler, IEICE TRANSACTIONS ON ELECTRONICS, E97C(6), 486-494, 2014
  42. 97-mW 8-Phase CMOS VCO and Dividers for a 134-GHz PLL Synthesizer, IEICE TRANSACTIONS ON ELECTRONICS, E98C(7), 685-692, 2015
  43. Design of CMOS Resonating Push-Push Frequency Doubler, J97-C(12), 484-491, 20141201
  44. Recent progress and prospects of terahertz CMOS, IEICE ELECTRONICS EXPRESS, 12(13), 2015
  45. Tehrahertz CMOS Design for Low-Power and High-Speed Wireless Communication, IEICE TRANSACTIONS ON ELECTRONICS, E98C(12), 1091-1104, 2015
  46. Special Section on Solid-State Circuit Design-Architecture, Circuit, Device and Design Methodology FOREWORD, IEICE TRANSACTIONS ON ELECTRONICS, E99C(4), 430-430, 2016
  47. C-12-31 Evaluation of Uncertainty at On-Wafer Measurement of CMOS Millimeter-Wave Integrated Circuits, Proceedings of the Society Conference of IEICE, 2014(2), 20140909
  48. C-2-70 Injection-Locked-Oscillator-Based Phase Shifter with High Phase Resolution, Proceedings of the Society Conference of IEICE, 2014(1), 20140909
  49. C-2-22 Multi-Stage CMOS Amplifier with Flat Gain Response, Proceedings of the Society Conference of IEICE, 2014(1), 20140909
  50. C-2-103 Study of Dummy Generation Method for Transmission Line on CMOS Circuit, Proceedings of the IEICE General Conference, 2014(1), 20140304
  51. C-2-92 CMOS Microstrip Line-to-WR3.4 Waveguide Transitions, Proceedings of the IEICE General Conference, 2014(1), 20140304
  52. 6.3 Dependable Air(6. Connectivity,Dependable VLSI System), The journal of Reliability Engineering Association of Japan, 35(8), 20131201
  53. 7.5 Dependable Wireless RFIC Technologies(7. Responsiveness,Dependable VLSI System), The journal of Reliability Engineering Association of Japan, 35(8), 20131201
  54. C-2-37 Design for Maximum FOM of 79GHz Power Amplifier with Temperature Compensation, Proceedings of the Society Conference of IEICE, 2013(1), 20130903
  55. Selection of Process Parameters in Electromagnetic Field Analysis, Proceedings of the Society Conference of IEICE, 2013(1), 20130903
  56. Study on the Structure of CMOS Transmission Lines for Short-Millimeter-Wave Band, Proceedings of the Society Conference of IEICE, 2013(1), 20130903
  57. Study on the Length of THRU Used in CMOS On-Chip Deembedding, Proceedings of the Society Conference of IEICE, 2013(1), 20130903
  58. Post Fabrication Modeling of Transmission Line, Proceedings of the Society Conference of IEICE, 2013(1), 20130903
  59. A Study of Modeling of Non-linear Capacitors in the Diode, Proceedings of the Society Conference of IEICE, 2013(2), 20130903
  60. Study on the Length ofthe Zero-Ohm Transmission Line in Millimeter-Wave CMOS Circuits, Proceedings of the Society Conference of IEICE, 2013(2), 20130903
  61. 209mW 11Gbps 130GHz CMOS Transceiver for Indoor Wireless Communication, IEICE technical report. Electron devices, 113(378), 67-71, 20140109
  62. Diode Modeling with Lossy Nonlinear Capacitance Model, Technical report of IEICE. ICD, 113(419), 20140121
  63. Design of CMOS Transmission Line-to-Waveguide Transitions from Milimeter Wave, Technical report of IEICE. ICD, 113(419), 20140121
  64. Drain Matching CMOS Millimeter-wave Frequency Doubler, Technical report of IEICE. ICD, 113(419), 20140121
  65. C-12-50 Diode Modeling with Lossy Nonlinear Capacitance Model, Proceedings of the IEICE General Conference, 2014(2), 20140304
  66. C-2-1 Temperature Compensation of CMOS Power Amplifier for 79GHz Radar System, Proceedings of the IEICE General Conference, 2014(1), 20140304
  67. C-2-36 Study for Gain of Small-Signal Amplifier at Conditionally Stable Region, Proceedings of the IEICE General Conference, 2014(1), 20140304
  68. C-2-61 The Effect on the Device Evaluation Results of Measurement Variability in the Millimeter-wave CMOS On-Chip De-embedding, Proceedings of the IEICE General Conference, 2014(1), 20140304
  69. Characterization of low-characteristic-impedance decoupling transmission line, IEICE technical report. Microwaves, 113(460), 29-34, 20140225
  70. On-wafer de-embedding pattern design for reduced uncertainty under an area constraint, IEICE technical report. Microwaves, 113(460), 35-40, 20140225
  71. Matching circuit for CMOS millimeter-wave frequency doubler, IEICE technical report. Microwaves, 113(460), 41-46, 20140225
  72. Consideration about Extremely High Frequency CMOS Amplification Circuit which is Wideband, IEICE technical report. Microwaves, 113(460), 47-51, 20140225
  73. C-2-1 Relationship between Size of Buffer and Maximum Oscillation Frequency in Ring Oscillator, Proceedings of the Society Conference of IEICE, 2014(1), 20140909
  74. C-2-39 CMOS transmission Line-to-Waveguide Transitions with coaxial structure, Proceedings of the Society Conference of IEICE, 2014(1), 20140909
  75. CI-2-8 Trends and Future Prospects of Terahertz CMOS Circuits, Proceedings of the Society Conference of IEICE, 2014(1), "SS-33"-"SS-34", 20140909
  76. Injection-Locked-Oscillator-Based Phase Shifter with High Phase Resolution, IEICE technical report. Computer systems, 114(346), 87-91, 20141124
  77. Study of 300 GHz CMOS wireless transceiver system, IEICE technical report. Computer systems, 114(346), 20141124
  78. Study of multi-stage CMOS small signal amplifier with wideband width and high gain, IEICE technical report. Microwaves, 114(376), 103-108, 20141211
  79. Study of Matched Ring Oscillators, IEICE technical report. Microwaves, 114(376), 109-114, 20141211
  80. C-2-47 300 GHz CMOS Microstrip Line-to-Waveguide Transitions, Proceedings of the Society Conference of IEICE, 2015(1), 20150825
  81. C-12-11 Model of Millimeter-Wave CMOS Zero-Ohm Transmission Line, Proceedings of the Society Conference of IEICE, 2015(2), 20150825
  82. C-12-14 Behavior model of a frequency tripler, Proceedings of the Society Conference of IEICE, 2015(2), 20150825
  83. Modeling of Nonlinear Capacitance on MOSFET at Millimeter-Wave Frequencies, IEICE technical report. Microwaves, 114(498), 1-5, 20150226
  84. Design of CMOS Multi-Stage Low-Noise Amplifier with Wide Bandwidth and High Gain, IEICE technical report. Microwaves, 114(498), 7-11, 20150226
  85. CMOS Biosensor IC Focusing on Dielectric Relaxations of Biological Water with 120GHz and 60GHz Oscillator Arrays, ITE Technical Report, 40(12), 41-44, 20160304
  86. FOREWORD, IEICE Transactions on Electronics, 99(4), 430-430, 2016
  87. Design of Matching Network with a Transformer, Proceedings of the Society Conference of IEICE, 2013(1), 20130903
  88. CMOS Millimeter-wave Differential Power Amplifier using On-chip Balun, Proceedings of the Society Conference of IEICE, 2013(1), 20130903
  89. Wireless digital data transmission from a 300 GHz CMOS transmitter, ELECTRONICS LETTERS, 52(15), 1353-1354, JUL 21 2016
  90. Compact 141-GHz Differential Amplifier with 20-dB Peak Gain and 22-GHz 3-dB Bandwidth, IEICE TRANSACTIONS ON ELECTRONICS, E99C(10), 1156-1163, OCT 2016
  91. CMOS Biosensor IC Focusing on Dielectric Relaxations of Biological Water With 120 and 60 GHz Oscillator Arrays, IEEE JOURNAL OF SOLID-STATE CIRCUITS, 51(11), 2534-2544, NOV 2016
  92. A 300 GHz CMOS Transmitter With 32-QAM 17.5 Gb/s/ch Capability Over Six Channels, IEEE JOURNAL OF SOLID-STATE CIRCUITS, 51(12), 3037-3048, DEC 2016
  93. Integrated-Circuit Approaches to THz Communications: Challenges, Advances, and Future Prospects, IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, E100A(2), 516-523, FEB 2017
  94. A consideration for transceivers operating at over 100GHz, 2011(113), 43-48, 20111209
  95. Millimeter-Wave and Terahertz CMOS Circuits and Applications, 2012(30), 25-26, 20120307
  96. 17.9 A 105Gb/s 300GHz CMOS transmitter, 2017 IEEE International Solid-State Circuits Conference (ISSCC), 308-309, 20170205
  97. Millimeter-Wave CMOS Circuits Aiming Terahertz Application, IEICE technical report. Electron devices, 109(313), 1-6, 20091122
  98. CS-8-4 Millimeter-Wave CMOS Circuits Towards Terahertz Region, Proceedings of the Society Conference of IEICE, 2010(1), "S-90"-"S-91", 20100831
  99. CS-2-5 Millimeter-Wave-Band CMOS Image Rejection Filer, Proceedings of the IEICE General Conference, 2010(1), "S-54"-"S-55", 20100302
  100. CI-2-1 Teraherz CMOS Oscillator, Proceedings of the Society Conference of IEICE, 2010(2), "SS-15"-"SS-16", 20100831
  101. BI-2-3 Millimeter-Wave/Terahertz CMOS Circuits, Proceedings of the Society Conference of IEICE, 2011(1), "SS-17"-"SS-18", 20110830
  102. Current Trend of Millimeter-Wave and Terahertz CMOS Ciruits, 111(271), 7-10, 20111021
  103. C-12-70 118GHz CMOS VCO using Back-Gate-Voltage-Controlled with Low Output Power Ripple, Proceedings of the IEICE General Conference, 2012(2), 20120306
  104. C-2-30 Comparison of Short-Millimeter-Wave CMOS On-Wafer De-embeddings, Proceedings of the Society Conference of IEICE, 2012(1), 20120828
  105. C-12-7 Wideband CMOS D-band Small-Signal Amplifier with Low Group Delay Variation, Proceedings of the Society Conference of IEICE, 2012(2), 20120828
  106. C-12-8 29.3GHz 133GHz Bandwidth CMOS Small-Signal Amplifier, Proceedings of the Society Conference of IEICE, 2012(2), 20120828
  107. C-12-10 Millimeter-Wave and Terahertz CMOS Circuits, Proceedings of the Society Conference of IEICE, 2012(2), 20120828
  108. Scattering matrix normalized to a nondiagonal reference impedance matrix, IEICE technical report. Microwaves, 112(459), 37-38, 20130227
  109. Relations of Gain and Stability in terms of the Parameter μ, Proceedings of the Society Conference of IEICE, 2013(1), 20130903

Publications such as books

  1. Wireless Transceiver Circuits: System Perspectives and Design Aspects, Modern transceiver systems require diversified design aspects as various radio and sensor applications have emerged. Choosing the right architecture and understanding interference and linearity issues are important for multi-standard cellular transceivers and software-defined radios. A millimeter-wave complementary metal–oxide–semiconductor (CMOS) transceiver design for multi-Gb/s data transmission is another challenging area. Energy-efficient short-range radios for body area networks and sensor networks have recently received great attention. To meet different design requirements, gaining good system perspectives is important., Ultrahigh-Speed Wireless Communication with Short-Millimeter-Wave CMOS Circuits, CMOS, millimeter-wave, transceiver, CRC Press, 2015, 2, 英, 9781482234350, 580
  2. Current Millimeter-Wave Technology, 波長が1cm以下の電波であるミリ波に関する技術開発は長い歴史を持っているが、車載レーダや固定無線などの一部の用途を除いては未だに大きなマーケットを形成していない。  その原因は、デバイスが未成熟であったこと、ミリ波は直進性が強くこれまでの無線通信とは異なり自由に接続できないこと、ミリ波通信では数Gbpsの超高速データ伝送が可能だが、コストに見合った用途やコンテンツが未成熟だったことなどが挙げられる。  初期のミリ波デバイスはインパットダイオードやガンダイオードなどの二端子デバイスであった。私が学生だった時代から使用されていたので、40年以上の歴史がある。しかしながら、二端子デバイスは入出力の分離が困難なため応用分野が限定され、ミリ波帯で広く使用されたのは三端子デバイスであるGaAs化合物半導体トランジスタであった。  現在では、これを伝送線路などの受動素子と併せて集積化したマイクロ波モノリシック集積回路(MMIC)によりミリ波回路の実用化が図られ、衛星放送の受信機、車載レーダ、固定無線などに用いられている。しかしながら、来たる大量使用に向けてモノリシック集積回路による実現が試みられるようになった。当初はSiGeヘテロ接合トランジスタによる集積回路が開発され、続いて微細化により周波数特性が急激に上昇したCMOS集積回路が開発された。CMOS集積回路の意義は高周波性能が目標に達したということだけではなく、デジタル回路との混載が可能であり、ミスマッチの抑制など様々なデジタル補償を用いることで、システム全体の性能向上、小面積化、低電力化が図り易いことや、将来のベースバンド回路との一体集積が可能となることにある。  また、最近は変復調の多値化ビット数の向上により、同一周波数帯域を用いてもデータレートを向上できる技術が開発されるようになり、従来に比較して約6倍の速度向上が図られている。このためには位相雑音の低減、周波数特性のフラットネスの向上、ベースバンドを含めた雑音や歪の低減が重要である。更にミリ波の課題である直進性への対応として、電子ビームフォーミング技術の開発が盛んである。また、低電力である程度の距離の通信を可能にするためには高利得アンテナが重要となるが、平面アンテナを中心として各種のアンテナ技術や、アンテナとチップを繋ぐ、低損失のパッケージ技術なども開発が進められている。 新たな市場への対応として、超高速データ伝送特性を用いて短時間のデータ伝送特性を実現する、データキオスクなどの新たな近距離無線技術が実用化されようとしている他、光ファイバーに比べて敷設の自由度が高いミリ波無線ネットワーク、4K・8Kなどの超高精細TVシステムへの適用技術、ミリ波イメージング技術なども開発が進められている。  以上のようにミリ波技術はデバイス技術だけでなく、回路技術やシステム技術の開発により、その課題を克服し、本来の利点である超高速信号伝送の実現に向けた開発が続けられており、今後の無線通信における通信容量の逼迫を解決する技術としてミリ波技術が実用化される日もそれほど遠くないものと思われる。, 2015, 7, 日, 978-4-7813-1078-7, 220, 8

Invited Lecture, Oral Presentation, Poster Presentation

  1. Low-Power 11 Gbps CMOS Transceiver, 2014/04/26, With Invitation, IEEE MTT-S Kansai Chapter
  2. Terahertz CMOS Electronics for Future Mobile Applications , Minoru Fujishima, 225th ECS Meeting, 2014/05/12, With Invitation, The Electrochemical Society, Orland, The highest operation frequency of RFCMOS circuits has risen exponentially over the years. This improved performance has culminated in new wireless and wireline communication standards with higher data rates. There has been a tenfold increase in the wireless data rate every four years, being much faster than the increasing speed of wireline communications. If this trend is to continue, 100 Gb/s will be realized around 2020. In order to realize a terahertz CMOS transceiver with 100 Gb/s, not only is device performance improvement through miniaturization important, but also circuit design techniques that move the circuit operation frequency close to fmax must be developed. Furthermore, one has to remind that stringent practical issue, power consumption, still remains for mobile applications even if the terahertz transceiver is technically feasible. Namely, one must consider how the power consumption maintains at the level of the current mobile applications even when ultrahigh data rate is acquired. This challenging issue implies that the near-fmax design technique is extremely useful because the fmax of a given MOSFET is a function of bias voltage, and reduced-fmax circuits can have superior power efficiency. To utilize near-fmax technology, firstly, one has to know the optimum bias point giving maximum operation frequency under limited power consumption. To achieve low-power operation at a high operation frequency, it is important to choose an appropriate set of bias voltages. The FP (frequency-power) plot is a useful guide to choosing such a set, which shows the gate and drain bias dependences of fmax and power consumption per unit gate width of an NMOSFET. The power-efficient bias points can be found from the FP plot as the points on the power contours where fmax is maximized. The power-efficient bias points give the best fmax for the given power consumption. Since the highest possible fmax of a given MOSFET is realized away from the power-efficient bias points, it is best to avoid the bias point that maximizes the transconductance (gm) if power efficiency is an important design goal. By reducing the actual fmax to be used through tracing the power-efficient bias curve, power consumption can be reduced considerably. As can be observed in 65- and 40-nm CMOS processes, reducing fmax enables exponential power reduction, where the reduction rate is 1/10 every 75 GHz in both process technologies. When trying to obtain the highest possible performance of a MOSFET, the MOSFET must be biased such that its highest fmax is realized. If, on the other hand, the power consumption is a great concern in a terahertz mobile application, one can opt for a reduced-fmax design. Power-efficient bias points can be found in the FP plot. Continued improvement of the device performance is thus essential for achieving the ultimate low-power high-speed wireless communication even in mobile application.
  3. Millimeter-wave and TeraHertz CMOS Design, Minoru Fujishima, Tsinghua University Seminar, 2014/05/16, With Invitation, Tsinghua University, Beijing, Millimeter-wave and its h igher-frequency part “terahertz” have attracted many attentions to open up new applications such as ultr ahigh-speed wireless communication and noninva sive transparent image. Utilizing recent transistor performance in CMOS technology, those new applications are being realized by commercial CMOS process. Since base-band signal processors are indispensable in a system level, CMOS circuits for millimeter-wave and terahertz have advantage against compound-semiconductor circuits from viewpoint of high-volume production and low-power consumption. In this talk, we will discuss millimeter-wave and terahertz CMOS design by clarifying difference from conventional microwave design. Design examples from system level to building block for mobile high-speed communication are also discussed.
  4. Millimeter-wave and TeraHertz CMOS Design, Minoru Fujishima, 2014/05/17, With Invitation, Millimeter-wave and its h igher-frequency part “terahertz” have attracted many attentions to open up new applications such as ultr ahigh-speed wireless communication and noninva sive transparent image. Utilizing recent transistor performance in CMOS technology, those new applications are being realized by commercial CMOS process. Since base-band signal processors are indispensable in a system level, CMOS circuits for millimeter-wave and terahertz have advantage against compound-semiconductor circuits from viewpoint of high-volume production and low-power consumption. In this talk, we will discuss millimeter-wave and terahertz CMOS design by clarifying difference from conventional microwave design. Design examples from system level to building block for mobile high-speed communication are also discussed.
  5. Power-Efficient Ultrahigh-Speed CMOS Wireless Communication, Minoru Fujishima, 7th Global Symposium on Millimeter-Waves (GSMM) 2014, 2014/05/23, With Invitation, IEEE MTT-S, Seoul
  6. Ultrahigh-Frequency CMOS Designs, Minoru Fujishima, CMOSETR 2014, 2014/07/07, With Invitation, ET CMOS Services, Grenoble
  7. Low-power ultrahigh-speed mobile communication with terahertz CMOS circuits, Minoru Fujishima, 2014 IEEE 12th International Conference on Solid -State and Integrated Circuit Technology (ICSICT), 2014/10/30, With Invitation, IEEE SSCS, Beijing
  8. Millimeter-wave and Terahertz CMOS Design, Minoru Fujishima, The third conference on millimeter wave & terahertz technologies (MMWATT), 2014/12/30, With Invitation, IEEE Iran Section, Teheran
  9. Power-efficient CMOS Devices for ultrahigh-speed terahertz communication, Minoru Fujishima, The third conference on millimeter wave & terahertz technologies (MMWATT), 2015/01/01, With Invitation, IEEE Iran Section, Teheran
  10. Evaluation and Modeling of Terahertz CMOS Devices,, Minoru Fujishima,, 2015 CMOS Emerging Technologies Research Conference, 2015/05/20, With Invitation, Canada Vancouver
  11. Device Characterization and Modeling for Terahertz CMOS Design,, Minoru Fujishima,, IEEE MTT-S International Microwave and RF Conference 2015 (IMaRC), 2015/12/10, With Invitation, India Hyderabad
  12. 300GHz CMOS Wireless Transmitter, M. Fujishima, EMERGING TECHNOLOGIES 2016 (ETCMOS 2016), 2016/05/27, With Invitation, Montreal, QC, Canada
  13. 300GHz CMOS Wireless Communication with 32 Quadrature-Amplitude-Modulation Capability, M. Fujishima, 229th ECS Meeting, 2016/05/31, With Invitation, San Diego, CA, USA
  14. 300 GHz CMOS Wireless Communication with Fiber-Optic Speed, M. Fujishima, Workshop on THz Technologies and Applications, 2016/06/14, With Invitation, Nanjing China
  15. Channel allocation of 300GHz band for fiber-optic-speed wireless communication, M Fujishima, URSI Asia-Pacific Radio Science Conference (URSI AP-RASC), 2016/08/22, With Invitation, Seoul, Korea
  16. 300GHz CMOS Wireless Transmitter with Fiber-Optic Speed, M. Fujishima, The 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT2016), 2016/08/24, With Invitation, Taipei, Taiwan
  17. Terahertz wireless communication using 300GHz CMOS transmitter, Minoru Fujishima, 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT-2016), 2016/10/27, With Invitation, Hangzhou, China
  18. Near-Fiber-Optic-Speed Wireless Communication with Terahertz CMOS Technology, M. Fujishima, IEEE MTT-S Latin America Microwave Conference (LAMC), 2016/12/13, With Invitation, Puerto Vallarta Mexico