MINORU FUJISHIMA

Last Updated :2024/04/03

Affiliations, Positions
Graduate School of Advanced Science and Engineering, Professor
Web Site
E-mail
fuji@hiroshima-u.ac.jp
Self-introduction
Device modeling, circuit design, system architecture for millimeter-wave and terahrtz CMOS circuits are studied.

Basic Information

Academic Degrees

  • Ph.D., The University of Tokyo

Educational Activity

  • [Bachelor Degree Program] School of Engineering : Cluster 2(Electrical, Electronic and Systems Engineering) : Program of Electronic Devices and Systems
  • [Master's Program] Graduate School of Advanced Science and Engineering : Division of Advanced Science and Engineering : Quantum Matter Program
  • [Doctoral Program] Graduate School of Advanced Science and Engineering : Division of Advanced Science and Engineering : Quantum Matter Program

Research Fields

  • Engineering;Electrical and electronic engineering;Measurement engineering

Research Keywords

  • millimeter wave
  • terahrtz
  • CMOS
  • device modeling
  • circuit design
  • microwave
  • wireless
  • sensing

Educational Activity

Course in Charge

  1. 2024, Undergraduate Education, 2Term, Introduction to Semiconductor Devices and Circuits
  2. 2024, Undergraduate Education, Year, Graduation Thesis
  3. 2024, Graduate Education (Master's Program) , First Semester, Seminar on Electronics A
  4. 2024, Graduate Education (Master's Program) , Second Semester, Seminar on Electronics B
  5. 2024, Graduate Education (Master's Program) , Academic Year, Academic Presentation in Electronics
  6. 2024, Graduate Education (Master's Program) , 1Term, Exercises in Electronics A
  7. 2024, Graduate Education (Master's Program) , 2Term, Exercises in Electronics A
  8. 2024, Graduate Education (Master's Program) , 3Term, Exercises in Electronics B
  9. 2024, Graduate Education (Master's Program) , 4Term, Exercises in Electronics B
  10. 2024, Graduate Education (Master's Program) , 4Term, Analog Integrated Circuits A
  11. 2024, Graduate Education (Master's Program) , Academic Year, Advanced Study in Quantum Matter
  12. 2024, Graduate Education (Doctoral Program) , Academic Year, Advanced Study in Quantum Matter

Research Activities

Academic Papers

  1. Effects of parasitic elements on L-type LC/CL matching circuits, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 20231107
  2. A 0.4-V 29-GHz-bandwidth power-scalable distributed amplifier in 55-nm CMOS DDC process, IEICE Transactions on Electronics, E105.C(10), 561-564, 20221001
  3. A 76-Gbit/s 265-GHz CMOS receiver with WR-3.4 waveguide interface, IEEE Journal of Solid-State Circuits, 57(10), 2988-2998, 20221001
  4. 140 GHz CMOS amplifier with group delay variation of 10.2 ps and 0.1 dB bandwidth of 12 GHz, IEICE ELECTRONICS EXPRESS, 8(14), 1192-1197, 20110725
  5. New Performance Indicators of Metal-Oxide-Semiconductor Field-Effect Transistors for High-Frequency Power-Conscious Design, JAPANESE JOURNAL OF APPLIED PHYSICS, 51(2), 2012
  6. Estimation of cotunneling in single-electron logic and its suppression, Japanese Journal of Applied Physics, 35(2B), 1146-1150, 19960201
  7. Correlated electron-hole transport in capacitively-coupled one-dimensional tunnel junction arrays, Japanese Journal of Applied Physics, 36(6B), 4166-4171, 19970601
  8. Proposal of a Schottky-barrier SET aiming at a future integrated device, IEICE Transactions on Electronics, E80-C(7), 881-885, 19970701
  9. Single-electron circuit simulation, IEICE Transactions on Electronics, E81-C(1), 21-29, 19980101
  10. Circuit simulator aiming at single-electron integration, Japanese Journal of Applied Physics, 37(3B), 1478-1482, 19980301
  11. Scaling of the single-electron tunnelling current through ultrasmall tunnel junctions, Journal of Physics: Condensed Matter, 12(32), 7223-7228, 20000801
  12. Charging and retention times in silicon-floating-dot-single-electron memory, Japanese Journal of Applied Physics, 40(3B), 2041-2045, 20010301
  13. Cotunneling-tolerant single-electron logic, Extended Abstracts of the 1995 International Conference on Solid State Devices and Materials (SSDM), 207-209, 19950901
  14. 1Gbps/ch 60GHz CMOS Multichannel Millimeter-Wave Repeater, 2010 Symposium on VLSI Circuits, 93-94, 20100601
  15. D-band 3.6-dB-insertion-loss ASK modulator with 19.5-dB isolation in 65-nm CMOS technology, 2010 Asia-Pacific Microwave Conference Proceedings (APMC), 1853-1856, 20101201
  16. 116GHz CMOS injection locked oscillator with 99.3dBc/Hz at 1MHz offset phase noise, 2010 Asia-Pacific Microwave Conference Proceedings (APMC), 786-789, 20101201
  17. 1Gbps/ch 60GHz CMOS Multichannel Millimeter-Wave Repeater, 2010 Symposium on VLSI Circuits, 93-94, 20100601
  18. 2Gbps CMOS amplitude-shift-keying demodulator with input sensitivity of 33dBm, 2010 European Microwave Conference (EuMC), 268-271, 20101001
  19. 115GHz CMOS VCO with 4.4% Tuning Range, the 4th European Microwave Integrated Circuits Conference, 128-131, 20090901
  20. 12.5mW 48GHz CMOS Image-Rejection Filter with 1GHz Tuning range, the 4th European Microwave Integrated Circuits Conference, 483-486, 20090901
  21. 24GHz 1.89mW 12x CMOS Frequency Multiplier Using Pulse-Injected Oscillator, the 4th European Microwave Integrated Circuits Conference, 180-183, 20090901
  22. 49 mW 5 Gbit/s CMOS receiver for 60 GHz impulse radio, Electronics Letters, vol 45(Issue 17), 889-890, 20090801
  23. 50 GHz S-shaped rat-race balun with 1.4 dB insertion loss in a wafer-level chip-size package process, International Journal of Microwave and Wireless Technologies, 347-352, 20090801
  24. A 110GHz Inductor-less CMOS Frequency Divider, 2009 IEEE Asian Solid-State Circuits Conference, 61-64, 20091101
  25. Algorithmic Design Flow for Millimeter-Wave CMOS Low-Noise Amplifiers, 2009 Thai-Japan Microwave, 該当なし, 20090801
  26. Analysis of de-embedding error cancellation in cascade circuit design, IEICE TRANSACTIONS on Electronics, E94-C(10), 1641-1649, 20111001
  27. Device-modeling techniques for high-frequency circuits operated at over 100 GHz, IEICE TRANSACTIONS on Electronics, E94-C(4), 589-597, 20110401
  28. Prospective Silicon Applications and Technologies in 2025, IEICE TRANSACTIONS on Electronics, E94-C(4), 386-393, 20110401
  29. Characteristic impedance determination technique for CMOS on-wafer transmission line with large substrate loss, 79th Automatic RF Techniques Group Conf. (ARFTG), 2012(-), -, 20120601
  30. On the choice of cascade de-embedding methods for on-wafer S-parameter measurement, International Symposium on Radio-Frequency Integration Technology (RFIT), 2012(-), 137-139, 20121101
  31. On the length of THRU standard for TRL de-embedding on Si substrate above 110 GHz, International Conference on Microelectronic Test Structures (ICMTS), 2013(-), 81-86, 20130301
  32. 118GHz CMOS amplifier with group delay variation of 11.2ps and 3dB bandwidth of 20.4GHz, 2012 International Meeting for Future of Electron Devices Kansai (IMFEDK), 1-2, 20120501
  33. Prospective Silicon Applications and Technologies in 2025, IEICE Trans. Electron., 94(4), 386-393, 20110401
  34. Device Modeling Techniques for High-Frequency Circuits Design Using Bond-Based Design at over 100GHz, IEICE Trans. Electron., 94(4), 589-597, 20110401
  35. Analysis of De-Embedding Error Cancellation in Cascade Circuit Design, IEICE Trans. Electron., 94(10), 1641-1649, 20111001
  36. Bias-Voltage-Dependent Subcircuit Model for Millimeter-Wave CMOS Circuit, IEICE Trans. Electron., 95(6), 1077-1085, 20120601
  37. A 120-GHz Transmitter and Receiver Chipset with 9-Gbps Data Rate Using 65-nm CMOS Technology, IEICE Trans. Electron., 95(7), 1154-1162, 20120701
  38. A 120 GHz/140 GHz Dual-Channel OOK Receiver Using 65nm CMOS Technology, IEICE Trans. Fundamentals, 96(2), 486-493, 20130201
  39. 98 mW 10 Gbps Wireless Transceiver Chipset With D-Band CMOS Circuits, IEEE JOURNAL OF SOLID-STATE CIRCUITS, 48(10), 2273-2284, 2013
  40. Modeling of Short-Millimeter-Wave CMOS Transmission Line with Lossy Dielectrics with Specific Absorption Spectrum, IEICE TRANSACTIONS ON ELECTRONICS, E96C(10), 1311-1318, 2013
  41. 135 GHz 98 mW 10 Gbps CMOS Amplitude Shift Keying Transmitter and Receiver Chipset, IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, E97A(1), 86-93, 2014
  42. 9 dB NF and +11 dBm OIP3 CMOS Single Conversion Front-End for a Satellite Low-Noise Block Down-Converter, IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, E97A(1), 101-108, 2014
  43. E-Band 65 nm CMOS Low-Noise Amplifier Design Using Gain-Boost Technique, IEICE TRANSACTIONS ON ELECTRONICS, E97C(6), 476-485, 2014
  44. 8-GHz Locking Range and 0.4-pJ Low-Energy Differential Dual-Modulus 10/11 Prescaler, IEICE TRANSACTIONS ON ELECTRONICS, E97C(6), 486-494, 2014
  45. 97-mW 8-Phase CMOS VCO and Dividers for a 134-GHz PLL Synthesizer, IEICE TRANSACTIONS ON ELECTRONICS, E98C(7), 685-692, 2015
  46. Design of CMOS Resonating Push-Push Frequency Doubler, J97-C(12), 484-491, 20141201
  47. Recent progress and prospects of terahertz CMOS, IEICE ELECTRONICS EXPRESS, 12(13), 2015
  48. Tehrahertz CMOS Design for Low-Power and High-Speed Wireless Communication, IEICE TRANSACTIONS ON ELECTRONICS, E98C(12), 1091-1104, 2015
  49. Special Section on Solid-State Circuit Design-Architecture, Circuit, Device and Design Methodology FOREWORD, IEICE TRANSACTIONS ON ELECTRONICS, E99C(4), 430-430, 20160401
  50. C-12-31 Evaluation of Uncertainty at On-Wafer Measurement of CMOS Millimeter-Wave Integrated Circuits, Proceedings of the Society Conference of IEICE, 2014(2), 20140909
  51. C-2-70 Injection-Locked-Oscillator-Based Phase Shifter with High Phase Resolution, Proceedings of the Society Conference of IEICE, 2014(1), 20140909
  52. C-2-22 Multi-Stage CMOS Amplifier with Flat Gain Response, Proceedings of the Society Conference of IEICE, 2014(1), 20140909
  53. C-2-103 Study of Dummy Generation Method for Transmission Line on CMOS Circuit, Proceedings of the IEICE General Conference, 2014(1), 20140304
  54. C-2-92 CMOS Microstrip Line-to-WR3.4 Waveguide Transitions, Proceedings of the IEICE General Conference, 2014(1), 20140304
  55. 6.3 Dependable Air(6. Connectivity,Dependable VLSI System), The journal of Reliability Engineering Association of Japan, 35(8), 20131201
  56. 7.5 Dependable Wireless RFIC Technologies(7. Responsiveness,Dependable VLSI System), The journal of Reliability Engineering Association of Japan, 35(8), 20131201
  57. C-2-37 Design for Maximum FOM of 79GHz Power Amplifier with Temperature Compensation, Proceedings of the Society Conference of IEICE, 2013(1), 20130903
  58. Selection of Process Parameters in Electromagnetic Field Analysis, Proceedings of the Society Conference of IEICE, 2013(1), 20130903
  59. Study on the Structure of CMOS Transmission Lines for Short-Millimeter-Wave Band, Proceedings of the Society Conference of IEICE, 2013(1), 20130903
  60. Study on the Length of THRU Used in CMOS On-Chip Deembedding, Proceedings of the Society Conference of IEICE, 2013(1), 20130903
  61. Post Fabrication Modeling of Transmission Line, Proceedings of the Society Conference of IEICE, 2013(1), 20130903
  62. A Study of Modeling of Non-linear Capacitors in the Diode, Proceedings of the Society Conference of IEICE, 2013(2), 20130903
  63. Study on the Length ofthe Zero-Ohm Transmission Line in Millimeter-Wave CMOS Circuits, Proceedings of the Society Conference of IEICE, 2013(2), 20130903
  64. 209mW 11Gbps 130GHz CMOS Transceiver for Indoor Wireless Communication, IEICE technical report. Electron devices, 113(378), 67-71, 20140109
  65. Diode Modeling with Lossy Nonlinear Capacitance Model, Technical report of IEICE. ICD, 113(419), 20140121
  66. Design of CMOS Transmission Line-to-Waveguide Transitions from Milimeter Wave, Technical report of IEICE. ICD, 113(419), 20140121
  67. Drain Matching CMOS Millimeter-wave Frequency Doubler, Technical report of IEICE. ICD, 113(419), 20140121
  68. C-12-50 Diode Modeling with Lossy Nonlinear Capacitance Model, Proceedings of the IEICE General Conference, 2014(2), 20140304
  69. C-2-1 Temperature Compensation of CMOS Power Amplifier for 79GHz Radar System, Proceedings of the IEICE General Conference, 2014(1), 20140304
  70. C-2-36 Study for Gain of Small-Signal Amplifier at Conditionally Stable Region, Proceedings of the IEICE General Conference, 2014(1), 20140304
  71. C-2-61 The Effect on the Device Evaluation Results of Measurement Variability in the Millimeter-wave CMOS On-Chip De-embedding, Proceedings of the IEICE General Conference, 2014(1), 20140304
  72. Characterization of low-characteristic-impedance decoupling transmission line, IEICE technical report. Microwaves, 113(460), 29-34, 20140225
  73. On-wafer de-embedding pattern design for reduced uncertainty under an area constraint, IEICE technical report. Microwaves, 113(460), 35-40, 20140225
  74. Matching circuit for CMOS millimeter-wave frequency doubler, IEICE technical report. Microwaves, 113(460), 41-46, 20140225
  75. Consideration about Extremely High Frequency CMOS Amplification Circuit which is Wideband, IEICE technical report. Microwaves, 113(460), 47-51, 20140225
  76. C-2-1 Relationship between Size of Buffer and Maximum Oscillation Frequency in Ring Oscillator, Proceedings of the Society Conference of IEICE, 2014(1), 20140909
  77. C-2-39 CMOS transmission Line-to-Waveguide Transitions with coaxial structure, Proceedings of the Society Conference of IEICE, 2014(1), 20140909
  78. CI-2-8 Trends and Future Prospects of Terahertz CMOS Circuits, Proceedings of the Society Conference of IEICE, 2014(1), "SS-33"-"SS-34", 20140909
  79. Injection-Locked-Oscillator-Based Phase Shifter with High Phase Resolution, IEICE technical report. Computer systems, 114(346), 87-91, 20141124
  80. Study of 300 GHz CMOS wireless transceiver system, IEICE technical report. Computer systems, 114(346), 20141124
  81. Study of multi-stage CMOS small signal amplifier with wideband width and high gain, IEICE technical report. Microwaves, 114(376), 103-108, 20141211
  82. Study of Matched Ring Oscillators, IEICE technical report. Microwaves, 114(376), 109-114, 20141211
  83. C-2-47 300 GHz CMOS Microstrip Line-to-Waveguide Transitions, Proceedings of the Society Conference of IEICE, 2015(1), 20150825
  84. C-12-11 Model of Millimeter-Wave CMOS Zero-Ohm Transmission Line, Proceedings of the Society Conference of IEICE, 2015(2), 20150825
  85. C-12-14 Behavior model of a frequency tripler, Proceedings of the Society Conference of IEICE, 2015(2), 20150825
  86. Modeling of Nonlinear Capacitance on MOSFET at Millimeter-Wave Frequencies, IEICE technical report. Microwaves, 114(498), 1-5, 20150226
  87. Design of CMOS Multi-Stage Low-Noise Amplifier with Wide Bandwidth and High Gain, IEICE technical report. Microwaves, 114(498), 7-11, 20150226
  88. CMOS Biosensor IC Focusing on Dielectric Relaxations of Biological Water with 120GHz and 60GHz Oscillator Arrays, ITE Technical Report, 40(12), 41-44, 20160304
  89. FOREWORD, IEICE Transactions on Electronics, 99(4), 430-430, 2016
  90. Design of Matching Network with a Transformer, Proceedings of the Society Conference of IEICE, 2013(1), 20130903
  91. CMOS Millimeter-wave Differential Power Amplifier using On-chip Balun, Proceedings of the Society Conference of IEICE, 2013(1), 20130903
  92. Wireless digital data transmission from a 300 GHz CMOS transmitter, ELECTRONICS LETTERS, 52(15), 1353-1354, 20160721
  93. Compact 141-GHz Differential Amplifier with 20-dB Peak Gain and 22-GHz 3-dB Bandwidth, IEICE TRANSACTIONS ON ELECTRONICS, E99C(10), 1156-1163, 20161001
  94. CMOS Biosensor IC Focusing on Dielectric Relaxations of Biological Water With 120 and 60 GHz Oscillator Arrays, IEEE JOURNAL OF SOLID-STATE CIRCUITS, 51(11), 2534-2544, 20161101
  95. A 300 GHz CMOS Transmitter With 32-QAM 17.5 Gb/s/ch Capability Over Six Channels, IEEE JOURNAL OF SOLID-STATE CIRCUITS, 51(12), 3037-3048, 20161201
  96. Integrated-Circuit Approaches to THz Communications: Challenges, Advances, and Future Prospects, IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, E100A(2), 516-523, 20170201
  97. A consideration for transceivers operating at over 100GHz, 2011(113), 43-48, 20111209
  98. Millimeter-Wave and Terahertz CMOS Circuits and Applications, 2012(30), 25-26, 20120307
  99. 17.9 A 105Gb/s 300GHz CMOS transmitter, 2017 IEEE International Solid-State Circuits Conference (ISSCC), 308-309, 20170205
  100. Millimeter-Wave CMOS Circuits Aiming Terahertz Application, IEICE technical report. Electron devices, 109(313), 1-6, 20091122
  101. CS-8-4 Millimeter-Wave CMOS Circuits Towards Terahertz Region, Proceedings of the Society Conference of IEICE, 2010(1), "S-90"-"S-91", 20100831
  102. CS-2-5 Millimeter-Wave-Band CMOS Image Rejection Filer, Proceedings of the IEICE General Conference, 2010(1), "S-54"-"S-55", 20100302
  103. CI-2-1 Teraherz CMOS Oscillator, Proceedings of the Society Conference of IEICE, 2010(2), "SS-15"-"SS-16", 20100831
  104. BI-2-3 Millimeter-Wave/Terahertz CMOS Circuits, Proceedings of the Society Conference of IEICE, 2011(1), "SS-17"-"SS-18", 20110830
  105. Current Trend of Millimeter-Wave and Terahertz CMOS Ciruits, 111(271), 7-10, 20111021
  106. C-12-70 118GHz CMOS VCO using Back-Gate-Voltage-Controlled with Low Output Power Ripple, Proceedings of the IEICE General Conference, 2012(2), 20120306
  107. C-2-30 Comparison of Short-Millimeter-Wave CMOS On-Wafer De-embeddings, Proceedings of the Society Conference of IEICE, 2012(1), 20120828
  108. C-12-7 Wideband CMOS D-band Small-Signal Amplifier with Low Group Delay Variation, Proceedings of the Society Conference of IEICE, 2012(2), 20120828
  109. C-12-8 29.3GHz 133GHz Bandwidth CMOS Small-Signal Amplifier, Proceedings of the Society Conference of IEICE, 2012(2), 20120828
  110. C-12-10 Millimeter-Wave and Terahertz CMOS Circuits, Proceedings of the Society Conference of IEICE, 2012(2), 20120828
  111. Scattering matrix normalized to a nondiagonal reference impedance matrix, IEICE technical report. Microwaves, 112(459), 37-38, 20130227
  112. Relations of Gain and Stability in terms of the Parameter μ, Proceedings of the Society Conference of IEICE, 2013(1), 20130903
  113. 300-GHz Balanced Varactor Doubler in Silicon CMOS for Ultrahigh-Speed Wireless Communications, IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 28(4), 341-343, 20180400
  114. DC and RF characterization of RF MOSFET embedding structure, 2017 International Conference of Microelectronic Test Structures (ICMTS), 1-5, 20170327
  115. Causal transmission line model incorporating frequency-dependent linear resistors, 2017 IEEE 21st Workshop on Signal and Power Integrity (SPI), 1-4, 20170507
  116. An 80–106 GHz CMOS amplifier with 0.5 V supply voltage, 2017 Radio Frequency Integrated Circuits Symposium (RFIC), 308-311, 20170604
  117. 56-Gbit/s 16-QAM Wireless Link With 300-GHz-Band CMOS Transmitter, 2017 IEEE International Microwave Symposium (IMS2017), 1-4, 20170607
  118. A 32 Gbit/s 16QAM CMOS Receiver in 300 GHz Band, 2017 IEEE International Microwave Symposium (IMS2017), 1-4, 20170608
  119. A figure of merit for terahertz transceiver modules, Vietnam Japan Microwave 2017 Conference (VJMW 2017), 20170614
  120. A 300 GHz CMOS Transmitter Front-End for Ultrahigh-Speed Wireless Communications, International Journal of Electrical and Computer Engineering (IJECE), vol. 7(no. 4), 2278-2286, 20170801
  121. Noise-figure optimization of a multi-stage millimeter-wave amplifier with negative capacitance feedback, 2017 Thailand-Japan Microwave (TJMW2017), 20170615
  122. 2.37-dBm-output 288–310 GHz frequency multiplier in 40 nm CMOS, 2017 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 28-30, 20170831
  123. A 416-mW 32-Gbit/s 300-GHz CMOS receiver, 2017 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 65-67, 20170831
  124. A 300 GHz single varactor doubler in 40 nm CMOS, 2017 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 165-167, 201709
  125. Low-power D-band CMOS amplifier for ultrahigh-speed wireless communications, International Journal of Electrical and Computer Engineering, vol. 8(no. 2), 933-938, 20180401
  126. 300-GHz CMOS transmitter module with built-in waveguide transition on a multilayered glass epoxy PCB, The 2018 IEEE Radio and Wireless Symposium (RWS2018), 154-156, 20180116
  127. A 300-uW K-Band Oscillator with High-Q Open Stub Capacitor in 55-nm CMOS DDC, The 2018 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT2018), 20180816
  128. 32-Gbit/s CMOS Receivers in 300-GHz Band, IEICE TRANSACTIONS ON ELECTRONICS, E101C(7), 464-471, 20180701
  129. A 79-85 GHz CMOS Amplifier with 0.35 V Supply Voltage, 2018 13th European Microwave Integrated Circuits Conference (EuMIC), 20180924
  130. A 239 – 315 GHz CMOS Frequency Doubler Designed by Using a Small-Signal Nonlinear Model, 2018 13th European Microwave Integrated Circuits Conference (EuMIC), 20180924
  131. 300-GHz CMOS Receiver Module with WR-3.4 Waveguide Interface, 2018 48th European Microwave Conference (EuMC), 20180926
  132. A 37-GHz-Input Divide-by-36 Injection-Locked Frequency Divider with 1.6-GHz Lock Range, IEEE Asian Solid-State Circuits Conference (A-SSCC 2018), 20181107
  133. Key Technologies for THz Wireless Link by Silicon CMOS Integrated Circuits, PHOTONICS, 5(4), 1-17, 20181123
  134. Emerging applications with terahertz communication, International Journal of Terahertz Science and Technology (TST), vol. 11(no. 4), 124-130, 20181231
  135. An 80Gb/s 300GHz-Band Single-Chip CMOS Transceiver, 2019 International Solid-State Circuits Conference (ISSCC 2019), 20190218
  136. MOSFET Small-Signal Model Considering Hot-Carrier Effect for Millimeter-Wave Frequencies, JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 40(4), 419-428, 20190401
  137. Causal Characteristic Impedance Determination Using Calibration Comparison and Propagation Constant, 2019 92nd ARFTG Microwave Measurement Conference (ARFTG), 1-6, 20190119
  138. Wideband Power-Line Decoupling Technique for Millimeter-Wave CMOS Integrated Circuits, 2019 IEEE International Symposium on Circuits and Systems (ISCAS), 1-4, 20190526
  139. An 80-Gb/s 300-GHz-Band Single-Chip CMOS Transceiver, IEEE JOURNAL OF SOLID-STATE CIRCUITS, 54(12), 3577-3588, 201912
  140. Design of CMOS On-Chip Transformer Coupled Matching Network for Millimeter-Wave Amplifiers with Optimal Chip Area, 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), 20190503
  141. Design of CMOS On-Chip Millimeter-Wave Transformer Coupled Balun and Power Divider-Combiner with Optimal Amplitude and Phase Imbalance, 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), 20190503
  142. 300-GHz Wireless Data Transmission System with Low-Snr CMOS RF Front End, 2019 12th Global Symposium on Millimeter Waves (GSMM), 20190522
  143. A-40-dBc Integrated-Phase-Noise 45-GHz Sub-Sampling PLL with 3.9-dBm Output and 2.1% DC-to-RF Efficiency, 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC 2019), 175-178, 20190601
  144. A 6-mW-DC-Power 300-GHz CMOS Receiver for Near-Field Wireless Communications, 2019 IEEE MTT-S International Microwave Symposium (IMS 2019), 504-507, 20190601
  145. Study on sub-terahertz-band wireless system with fiber-optic speed, Impact, vol. 2020(no. 1), 41-42, 20200227
  146. Future of 300 GHz band wireless communications and their enabler, CMOS transceiver technologies, JAPANESE JOURNAL OF APPLIED PHYSICS, 60(SB), 20210215
  147. Improvement Method of Power-Added Efficiency of Multi-Stage CMOS Amplifiers in Millimeter-Wave Band, 2020 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 28-30, 20200902
  148. Effect of an Electromagnetic Wave Absorber on 300-GHz Short-Range Wireless Communications, 2020 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 94-96, 20200902
  149. 300-GHz CMOS-Based Wireless Link Using 40-dBi Cassegrain Antenna for IEEE Standard 802.15. 3d, 2020 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 136-138, 20200903
  150. Overview of sub-terahertz communication and 300GHz CMOS transceivers, IEICE ELECTRONICS EXPRESS, 18(8), 20210425
  151. White Paper on RF Enabling 6G – Opportunities and Challenges from Technology to Spectrum, University of Oulu 6G Research Visions, No. 13(No. 13), 20210401
  152. A 32-Gb/s CMOS Receiver With Analog Carrier Recovery and Synchronous QPSK Demodulation,, in IEEE Microwave and Wireless Components Letters, vol. 31(no. 6), 768-770, 20210317
  153. Coverage of Sub-Terahertz Communications and A 300-GHz-Band CMOS Transceiver, 2021 13th Global Symposium on Millimeter-Waves & Terahertz (GSMM), 1-3, 20210523
  154. A 258-GHz CMOS Transmitter with Phase-Shifting Architecture for Phased-Array Systems, 2021 IEEE MTT-S International Microwave Symposium (IMS), 705-708, 20210607
  155. A 272-GHz CMOS Analog BPSK/QPSK Demodulator for IEEE 802.15.3d, ESSCIRC 2021 – IEEE 47th European Solid State Circuits Conference (ESSCIRC), 415-418, 20210913
  156. A 76-Gbit/s 265-GHz CMOS Receiver,, 2021 IEEE Asian Solid-State Circuits Conference (A-SSCC), 1-3, 20210913
  157. A 30-To-70-GHz CMOS Amplifier for 300-GHz Heterodyne Receivers, 2021 Asia-Pacific Microwave Conference (APMC), 20211130

Publications such as books

  1. 2021/03/29, THz Communications. Springer Series in Optical Sciences, vol 234., Si-CMOS, Springer, Cham, 2021, 202103, Joint work, O. Momeni, M. Fujishima, 978-3-030-73737-5, pp.235-255
  2. 2015/02, Wireless Transceiver Circuits: System Perspectives and Design Aspects, Modern transceiver systems require diversified design aspects as various radio and sensor applications have emerged. Choosing the right architecture and understanding interference and linearity issues are important for multi-standard cellular transceivers and software-defined radios. A millimeter-wave complementary metal–oxide–semiconductor (CMOS) transceiver design for multi-Gb/s data transmission is another challenging area. Energy-efficient short-range radios for body area networks and sensor networks have recently received great attention. To meet different design requirements, gaining good system perspectives is important., Ultrahigh-Speed Wireless Communication with Short-Millimeter-Wave CMOS Circuits, CMOS, millimeter-wave, transceiver, CRC Press, 2015, 2, Scholarly Book, Joint work, 英, 9781482234350, 580
  3. 2015/07, Current Millimeter-Wave Technology, 波長が1cm以下の電波であるミリ波に関する技術開発は長い歴史を持っているが、車載レーダや固定無線などの一部の用途を除いては未だに大きなマーケットを形成していない。  その原因は、デバイスが未成熟であったこと、ミリ波は直進性が強くこれまでの無線通信とは異なり自由に接続できないこと、ミリ波通信では数Gbpsの超高速データ伝送が可能だが、コストに見合った用途やコンテンツが未成熟だったことなどが挙げられる。  初期のミリ波デバイスはインパットダイオードやガンダイオードなどの二端子デバイスであった。私が学生だった時代から使用されていたので、40年以上の歴史がある。しかしながら、二端子デバイスは入出力の分離が困難なため応用分野が限定され、ミリ波帯で広く使用されたのは三端子デバイスであるGaAs化合物半導体トランジスタであった。  現在では、これを伝送線路などの受動素子と併せて集積化したマイクロ波モノリシック集積回路(MMIC)によりミリ波回路の実用化が図られ、衛星放送の受信機、車載レーダ、固定無線などに用いられている。しかしながら、来たる大量使用に向けてモノリシック集積回路による実現が試みられるようになった。当初はSiGeヘテロ接合トランジスタによる集積回路が開発され、続いて微細化により周波数特性が急激に上昇したCMOS集積回路が開発された。CMOS集積回路の意義は高周波性能が目標に達したということだけではなく、デジタル回路との混載が可能であり、ミスマッチの抑制など様々なデジタル補償を用いることで、システム全体の性能向上、小面積化、低電力化が図り易いことや、将来のベースバンド回路との一体集積が可能となることにある。  また、最近は変復調の多値化ビット数の向上により、同一周波数帯域を用いてもデータレートを向上できる技術が開発されるようになり、従来に比較して約6倍の速度向上が図られている。このためには位相雑音の低減、周波数特性のフラットネスの向上、ベースバンドを含めた雑音や歪の低減が重要である。更にミリ波の課題である直進性への対応として、電子ビームフォーミング技術の開発が盛んである。また、低電力である程度の距離の通信を可能にするためには高利得アンテナが重要となるが、平面アンテナを中心として各種のアンテナ技術や、アンテナとチップを繋ぐ、低損失のパッケージ技術なども開発が進められている。 新たな市場への対応として、超高速データ伝送特性を用いて短時間のデータ伝送特性を実現する、データキオスクなどの新たな近距離無線技術が実用化されようとしている他、光ファイバーに比べて敷設の自由度が高いミリ波無線ネットワーク、4K・8Kなどの超高精細TVシステムへの適用技術、ミリ波イメージング技術なども開発が進められている。  以上のようにミリ波技術はデバイス技術だけでなく、回路技術やシステム技術の開発により、その課題を克服し、本来の利点である超高速信号伝送の実現に向けた開発が続けられており、今後の無線通信における通信容量の逼迫を解決する技術としてミリ波技術が実用化される日もそれほど遠くないものと思われる。, 2015, 7, Scholarly Book, Joint work, 日, 978-4-7813-1078-7, 220, 8
  4. 2018/08/01, VLSI Design and Tems Dependabilityest for Syst, Connectivity in Wireless Telecommunications, Springer, 2018, 201808, Scholarly Book, Joint work, EN, K. Tsubouchi, F. Adachi, S. Kameda, M. Motoyoshi, A. Taira, N. Suematsu, T. Takagi, H. Oguma, M. Fujishima, R. Inagaki, M. Tsuru, E. Taniguchi, H. Fukumoto, A. Matsuzawa, M. Miyahara, M. Iwata, F. Yamagata, N. Izuka,, 245-324
  5. 2017/08/01, International Journal of Electrical and Computer Engineering (IJECE), A 300 GHz CMOS Transmitter Front-End for Ultrahigh-Speed Wireless Communications, 2017/08/01, 201708, T. A. Vu, M. Fujishima, pp. 2278-2286
  6. 2017/02/01, IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, Integrated-Circuit Approaches to THz Communications: Challenges, Advances, and Future Prospects, 2017/02/01, 201702, M. Fujishima, S. Amakawa, pp. 516-523
  7. 2019/08/19, Design of Terahertz CMOS Integrated Circuits for High-Speed Wireless Communication, Design of Terahertz CMOS Integrated Circuits for High-Speed Wireless Communication, The Institution of Engineering and Technology (IET), 2019, 201908, Scholarly Book, Joint work, EN, 1785613871, 189
  8. 2019/07/21, Connectivity in Wireless Telecommunications, VLSI Design and Test for Systems Dependability, Springer, Tokyo, 2019, 201907, Scholarly Book, Joint work, EN, K. Tsubouchi, F. Adachi, S. Kameda, M. Motoyoshi, A. Taira, N. Suematsu, T. Takagi, H. Oguma, M. Fujishima, R. Inagaki, M. Tsuru, E. Taniguchi, H. Fukumoto, A. Matsuzawa, M. Miyahara, M. Iwata, F. Yamagata, N. Izuka, pp. 245-324

Invited Lecture, Oral Presentation, Poster Presentation

  1. Effects of Parasitic Elements on LC/CL Matching Circuits, S. Tanaka, T. Yoshida, M. Fujishima, International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC 2023), 2023/06/27, Without Invitation, English
  2. Analysis of the Wilkinson Coupler Under Different Input Conditions, S. Tanaka, T. Yoshida, S. Amakawa, M. Fujishima, URSI General Assembly and Scientific Symposium (URSI GASS 2023), 2023/08/24, Without Invitation, English
  3. Differential Wilkinson Coupler with Reduced Reflections at Intersections, Z. Yan, S. Tanaka, T. Yoshida, M. Fujishima, URSI General Assembly and Scientific Symposium (URSI GASS 2023), 2023/08/22, Without Invitation, English
  4. Suppression of Reflections and Elimination of Transmission Disparities in Differential Crossover Line Junctions, Z. Yan, S. Tanaka, T. Yoshida, M. Fujishima, 2023 IEEE 15th International Conference on ASIC (ASICON 2023), 2023/10/27, Without Invitation, English
  5. A 27-to-65-GHz CMOS Amplifier with Tunable Frequency Response, L. Xu, S. Yabuki, S. Tanaka, T. Yoshida, M. Fujishima, 2023 IEEE 15th International Conference on ASIC (ASICON 2023), 2023/10/27, Without Invitation, English
  6. A 2D Beam-Steerable 252-285-GHz 25.8-Gbit/s CMOS Receiver Module, T. Yoshida, S. Hara, T. Hagino. M. Mubarak, A. Kasamatsu, K. Takano, Y. Sugimoto, K. Sakakibara, S. Amakawa, M. Fujishima, 2023 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2023/11/05, Without Invitation, English
  7. Sub-Terahertz Transceivers in Silicon- Issues and Challenges -, M. Fujishima, imec seminar, 2022/09/16, With Invitation, English, Belgium
  8. 300-GHz Back-Radiation On-Chip-Antenna Measurement with Electromagnetic-Wave-Absorption Sheet, S. Lee, K. Katayama, K. Takano, M. Fujita, M. Toyoda, S. Hara, I. Watanabe, A. Kasamatsu, S. Amakawa, T. Yoshida, M. Fujishima, 2022 IEEE 34th International Conference on Microelectronic Test Structures (ICMTS), 2022/03/21, Without Invitation, English
  9. Will Terahertz Communication Change the World?, M. Fujishima, The 2022 Asia-Pacific Microwave Conference (APMC 2022), 2022/11/30, With Invitation, English, Yokohama
  10. 300-GHz band transceiver using silicon CMOS integrated circuits -Behind-the-scenes of circuit design that exceeds fmax-, M. Fujishima, 2022 International Conference on Analog VLSI Circuits(AVIC), 2022/10/31, With Invitation, English, HIroshima
  11. Challenges and future of sub-THz communications using CMOS integrated circuits, M. Fujishima, The European Microwave Conference (EuMC), 2022/09/27, With Invitation, English, Milan, Italy
  12. 300-GHz self-heterodyne-mixing-receiver-based wireless data transmission, S. Lee, Y. Morishita,S. Amakawa,T. Yoshida and M. Fujishima, 2022 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT 2022), 2022/08/31, With Invitation, English, Online
  13. Potential of terahertz communication not limited to short range, M. Fujishima, 2022 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT 2022), 2022/08/31, With Invitation, English, Online
  14. Issues and challenges for sub-teraertz transceivers, M. Fujishima, The 10th Murata Semiconductor Workshop, 2022/07/07, With Invitation, English, JAPAN
  15. A 300-GHz analog-demodulation CMOS receiver for IEEE 802.15.3d, S. Lee, S. Amakawa, T. Yoshida and M. Fujishima, The 14th Global Symposium on Millimeter-waves & Terahertz (GSMM 2022), 2022/03/20, With Invitation, English, Seoul
  16. 29-to-65-GHz CMOS amplifier with tunable frequency response, S. Yabuki, S. Fujimoto, S. Amakawa, T. Yoshida and M. Fujishima, 2022 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT 2022), 2022/08/30, Without Invitation, English, Online
  17. 254-GHz-to-299-GHz down conversion mixer using 45nm SOI CMOS, Y. Sako, T. Kobayashi, S. Hara, S. Amakawa, T. Yoshida, M. Fujishima, 65th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS 2022), 2022/08/08, Without Invitation, English, Online
  18. Demonstration of non-invasive probing of CMOS devices with aluminum pads at frequencies up to 500 GHz, R. Sakamaki, R. Kishikawa, S. Kon, Y. Tojima, I. Somada, S. Matsui, G. Taoka, T. Yoshida, S. Amakawa, M. Fujishima, 99th Automatic Radio Frequency Techniques Group (ARFTG) Microwave Measurement Conference, 2022/06/24, Without Invitation, English, Denver, CO, USA
  19. 300-GHz Back-Radiation On-Chip-Antenna Measurement with Electromagnetic-Wave-Absorption Sheet, S. Lee, K. Katayama, K. Takano, M. Fujita, M. Toyoda, S. Hara, I. Watanabe, A. Kasamatsu, S. Amakawa, T. Yoshida, M. Fujishima, 2022 IEEE 34th International Conference on Microelectronic Test Structures (ICMTS), 2022/03/21, Without Invitation, English, Virtual
  20. Overview of Sub-Terahertz Communications and 300 GHz CMOS Transceivers, M. Fujishima, Intel Laboratory Web Seminar, 2021/05/05, With Invitation, English, Online
  21. Overview of Sub-Terahertz Communications and 300 GHz CMOS Transceivers, M. Fujishima, POSTECH EE seminar in RFIC, 2021/04/02, With Invitation, English, Online
  22. CMOS Transceiver Realizing Terahertz Wireless Communication, The Key Technology of Beyond 5G, M. Fujishima, 2020 IEEE 15th International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2020/11/03, With Invitation, English, Kunming, China (Online)
  23. Future of 300-GHz-Band Wireless Communications and Their Enabler, CMOS Transceiver Technologies, M. Fujishima, 2020 International Conference on Solid-State Devices and Materials (SSDM), 2020/09/29, With Invitation, English, VIRTUAL
  24. Ultrahigh-Speed One-Chip CMOS Transceiver with 300-GHz Band, M. Fujishima, 2019 IEEE 13th International Conference on ASIC (ASICON), 2019/10/31, With Invitation, English, Chongqing, China
  25. 300-GHz-Band One-Chip CMOS Wireless Transceiver and Its Future, M. Fujishima, The 5th International Symposium on Microwave/Terahertz Science and Applications (MTSA2019), 2019/10/01, With Invitation, English, Busan, Korea
  26. 300-GHz-Band CMOS Ultrahigh-Speed Transceiver and Its Future, M. Fujishima, The 4th Japan-Russia Joint Microwave and Telecommunication Workshop, 2019/09/19, With Invitation, English, St. Peterburg, Russia
  27. One-Chip CMOS Terahertz Transceiver, M. Fujishima, IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2019/08/30, With Invitation, English, Nanjing, China
  28. 300-GHz-Band CMOS Transmitter and Receiver Modules with WR-3.4 Waveguide Interface, S. Amakawa and M. Fujishima, IEEE MTT-S International Microwave Conference on Hardware and Systems for 5G and Beyond (IMC-5G), 2019/08/15, With Invitation, English, Atlanta, USA
  29. Terahertz One-Chip CMOS Transceiver (Keynote), M. Fujishima, The sixth IEEE MTT-S International Wireless Symposium (IEEE IWS 2019), 2019/05/20, With Invitation, English, Guangzhou, China
  30. Ultrahigh-Speed Terahertz Transceiver with CMOS Technology, M. Fujishima, The European Microwave Conference in Central Europe (EuMCE), 2019/05/13, With Invitation, English, Prague, Czech Republic
  31. 300-GHz-band wireless communication and its futures, M. Fujishima, IHP workshop, 2019/03/20, With Invitation, English, Frankfurt (Oder), Germany
  32. 300-GHz-band wireless communication and its futures, M. Fujishima, IMEC workshop, 2019/03/18, With Invitation, English, Leuven, Belgium
  33. 300-GHz-band CMOS transceiver for ultrahigh-speed terahertz communication (Invited Paper), M. Fujishima, Special Session on THz Communication in SPIE Photonics West, 2019/02/05, With Invitation, English, San Francisco
  34. Ultrahigh-speed terahertz wireless communication with silicon CMOS integrated circuits, M. Fujishima, 2nd CIRFE Symposium Symposium on Advanced Applications, 2018/12/04, With Invitation, English, Nagoya
  35. 300-GHz CMOS transceiver for terahertz wireless communication, S. Hara, K. Takano, K. Katayama, R. Dong and S. Lee, I. Watanabe, N. Sekine, A. Kasamatsu, T. Yoshida, S. Amakawa and M. Fujishima, S. Hara, K. Takano, K. Katayama, R. Dong and S. Lee, I. Watanabe, N. Sekine, A. Kasamatsu, T. Yoshida, S. Amakawa and M. Fujishima, 30th Asia-Pacific Microwave Conference (APMC 2018), 2018/11/08, With Invitation, English, Kyoto
  36. Terahertz CMOS technology for beyond 5G, M. Fujishima, IEEE Asian Solid-State Circuits Conference (A-SSCC 2018), 2018/11/05, With Invitation, English, Tainan
  37. 300-GHz-band wireless transceiver with CMOS integrated circuits, M. Fujishima, 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT-2018), 2018/11/01, With Invitation, English, Qingdao
  38. 300GHz-Band CMOS Wireless Transceiver, M. Fujishima, 2018 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT2018), 2018/08/17, With Invitation, English, Melbourne, Australia
  39. Ultrahigh-speed terahertz wireless communication with silicon integrated circuits, M. Fujishima, Workshop B, The 2018 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT2018), 2018/08/15, With Invitation, English, Melborne
  40. 300-GHz-band Communication Using Silicon CMOS Integrated Circuits, M. Fujishima, Progress In Electromagnetics Research Symposium (PIERS 2018), 2018/08/03, With Invitation, English, Toyama
  41. 300-GHz-band CMOS wireless communication and its potential applications, M. Fujishima, 2018 Asia-Pacific Workshop on Fundamentals and Applications of Advanced Semiconductor Devices (AWAD 2018), 2018/07/03, With Invitation, English, Kitakyusyu
  42. Terahertz Wireless Communication with Silicon CMOS Integrated Circuits, M. Fujishima, 2018 Thailand–Japan Microwave (TJMW), 2018/06/28, With Invitation, English, Bangkok, Thailand
  43. 300-GHz CMOS wireless transceiver and its future, M. Fujishima, WSD: eXtreme-bandwidth: architectures for RF and mmW transceivers in nanoscale CMOS, 2018/06/10, With Invitation, English, Pennsylvania, USA
  44. 300-GHz-band CMOS transceiver, M. Fujishima, the 2017 IEEE International Microwave and RF Conference (IMaRC 2017), 2017/12/13, With Invitation, English, India Ahmedabad
  45. 300-GHz-band terahertz transceiver using CMOS integrated circuits, M. Fujishima, The 6th Shenzhen International Conference on Advanced Science and Technology (SICAST 2017), 2017/12/06, With Invitation, English, China Shenzhen
  46. Technologies for THz wireless link by Silicon CMOS Integrated Circuits, M. Fujishima, 4th Microwave/THz Science and Applications (MTSA 2017), 2017/11/22, With Invitation, English, Okayama
  47. Terahertz CMOS Transceiver for Tera-bps Wireless Link, M. Fujishima, IEEE 12th International Conference on ASIC (ASICON 2017), 2017/10/28, With Invitation, English, China Guiyang
  48. CMOS terahertz transceiver to open up an emerging communication region, M. Fujishima, RIEC Russia-Japan Joint International Microwave Workshop 2017, 2017/10/19, With Invitation, English, Sendai
  49. Near-fiber-optic-speed 300-GHz-band link and a dedicated CMOS transceiver, M. Fujishima, 2017 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2017/08/31, With Invitation, English, Korea Seoul
  50. 300-GHz-band CMOS wireless transceiver and its future, M. Fujishima, 42 International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2017), 2017/08/28, With Invitation, English, Cancun, Mexico
  51. Ultimate high-speed and low-power CMOS transceiver, M. Fujishima, M. Fujishima, R. Dong, Advanced CMOS Technology Summer School (ACSS) 2017, 2017/08/01, With Invitation, English, Beijing China
  52. 300GHz CMOS Transceiver -Beyond 5G Wireless -, R. Dong, R. Dong, K. Takano, K. Katayama, S. Hara , T. Yoshida, S. Amakawa, M. Fujishima, 5G Event Shanghai, 2017/07/20, With Invitation, English, Shanghai, China
  53. A 300GHz-band wireless transceiver using Si-CMOS integrated circuits, Minoru Fujishima, Photonics Society Summer Topical Meeting Series (SUM), 2017 IEEE, 2017/07/10, With Invitation, English, San Juan, United States
  54. 300GHz wireless link with a CMOS transceiver, Minoru Fujishima, Nano-Micro Conference 2017, 2017/06/20, With Invitation, English, Shanghai, China
  55. Near-Fiber-Optic-Speed Wireless Communication with Terahertz CMOS Technology, M. Fujishima, IEEE MTT-S Latin America Microwave Conference (LAMC), 2016/12/13, With Invitation, English, Puerto Vallarta Mexico
  56. Terahertz wireless communication using 300GHz CMOS transmitter, Minoru Fujishima, 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT-2016), 2016/10/27, With Invitation, English, Hangzhou, China
  57. 300GHz CMOS Wireless Transmitter with Fiber-Optic Speed, M. Fujishima, The 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT2016), 2016/08/24, With Invitation, English, Taipei, Taiwan
  58. Channel allocation of 300GHz band for fiber-optic-speed wireless communication, M Fujishima, URSI Asia-Pacific Radio Science Conference (URSI AP-RASC), 2016/08/22, With Invitation, English, Seoul, Korea
  59. 300 GHz CMOS Wireless Communication with Fiber-Optic Speed, M. Fujishima, Workshop on THz Technologies and Applications, 2016/06/14, With Invitation, English, Nanjing China
  60. 300GHz CMOS Wireless Communication with 32 Quadrature-Amplitude-Modulation Capability, M. Fujishima, 229th ECS Meeting, 2016/05/31, With Invitation, English, San Diego, CA, USA
  61. 300GHz CMOS Wireless Transmitter, M. Fujishima, EMERGING TECHNOLOGIES 2016 (ETCMOS 2016), 2016/05/27, With Invitation, English, Montreal, QC, Canada
  62. Device Characterization and Modeling for Terahertz CMOS Design,, Minoru Fujishima,, IEEE MTT-S International Microwave and RF Conference 2015 (IMaRC), 2015/12/10, With Invitation, English, India Hyderabad
  63. Evaluation and Modeling of Terahertz CMOS Devices,, Minoru Fujishima,, 2015 CMOS Emerging Technologies Research Conference, 2015/05/20, With Invitation, English, Canada Vancouver
  64. Power-efficient CMOS Devices for ultrahigh-speed terahertz communication, Minoru Fujishima, The third conference on millimeter wave & terahertz technologies (MMWATT), 2015/01/01, With Invitation, English, IEEE Iran Section, Teheran
  65. Millimeter-wave and Terahertz CMOS Design, Minoru Fujishima, The third conference on millimeter wave & terahertz technologies (MMWATT), 2014/12/30, With Invitation, English, IEEE Iran Section, Teheran
  66. Low-power ultrahigh-speed mobile communication with terahertz CMOS circuits, Minoru Fujishima, 2014 IEEE 12th International Conference on Solid -State and Integrated Circuit Technology (ICSICT), 2014/10/30, With Invitation, English, IEEE SSCS, Beijing
  67. Ultrahigh-Frequency CMOS Designs, Minoru Fujishima, CMOSETR 2014, 2014/07/07, With Invitation, English, ET CMOS Services, Grenoble
  68. Power-Efficient Ultrahigh-Speed CMOS Wireless Communication, Minoru Fujishima, 7th Global Symposium on Millimeter-Waves (GSMM) 2014, 2014/05/23, With Invitation, English, IEEE MTT-S, Seoul
  69. Millimeter-wave and TeraHertz CMOS Design, Minoru Fujishima, 2014/05/17, With Invitation, English, Millimeter-wave and its h igher-frequency part “terahertz” have attracted many attentions to open up new applications such as ultr ahigh-speed wireless communication and noninva sive transparent image. Utilizing recent transistor performance in CMOS technology, those new applications are being realized by commercial CMOS process. Since base-band signal processors are indispensable in a system level, CMOS circuits for millimeter-wave and terahertz have advantage against compound-semiconductor circuits from viewpoint of high-volume production and low-power consumption. In this talk, we will discuss millimeter-wave and terahertz CMOS design by clarifying difference from conventional microwave design. Design examples from system level to building block for mobile high-speed communication are also discussed.
  70. Millimeter-wave and TeraHertz CMOS Design, Minoru Fujishima, Tsinghua University Seminar, 2014/05/16, With Invitation, English, Tsinghua University, Beijing, Millimeter-wave and its h igher-frequency part “terahertz” have attracted many attentions to open up new applications such as ultr ahigh-speed wireless communication and noninva sive transparent image. Utilizing recent transistor performance in CMOS technology, those new applications are being realized by commercial CMOS process. Since base-band signal processors are indispensable in a system level, CMOS circuits for millimeter-wave and terahertz have advantage against compound-semiconductor circuits from viewpoint of high-volume production and low-power consumption. In this talk, we will discuss millimeter-wave and terahertz CMOS design by clarifying difference from conventional microwave design. Design examples from system level to building block for mobile high-speed communication are also discussed.
  71. Terahertz CMOS Electronics for Future Mobile Applications , Minoru Fujishima, 225th ECS Meeting, 2014/05/12, With Invitation, English, The Electrochemical Society, Orland, The highest operation frequency of RFCMOS circuits has risen exponentially over the years. This improved performance has culminated in new wireless and wireline communication standards with higher data rates. There has been a tenfold increase in the wireless data rate every four years, being much faster than the increasing speed of wireline communications. If this trend is to continue, 100 Gb/s will be realized around 2020. In order to realize a terahertz CMOS transceiver with 100 Gb/s, not only is device performance improvement through miniaturization important, but also circuit design techniques that move the circuit operation frequency close to fmax must be developed. Furthermore, one has to remind that stringent practical issue, power consumption, still remains for mobile applications even if the terahertz transceiver is technically feasible. Namely, one must consider how the power consumption maintains at the level of the current mobile applications even when ultrahigh data rate is acquired. This challenging issue implies that the near-fmax design technique is extremely useful because the fmax of a given MOSFET is a function of bias voltage, and reduced-fmax circuits can have superior power efficiency. To utilize near-fmax technology, firstly, one has to know the optimum bias point giving maximum operation frequency under limited power consumption. To achieve low-power operation at a high operation frequency, it is important to choose an appropriate set of bias voltages. The FP (frequency-power) plot is a useful guide to choosing such a set, which shows the gate and drain bias dependences of fmax and power consumption per unit gate width of an NMOSFET. The power-efficient bias points can be found from the FP plot as the points on the power contours where fmax is maximized. The power-efficient bias points give the best fmax for the given power consumption. Since the highest possible fmax of a given MOSFET is realized away from the power-efficient bias points, it is best to avoid the bias point that maximizes the transconductance (gm) if power efficiency is an important design goal. By reducing the actual fmax to be used through tracing the power-efficient bias curve, power consumption can be reduced considerably. As can be observed in 65- and 40-nm CMOS processes, reducing fmax enables exponential power reduction, where the reduction rate is 1/10 every 75 GHz in both process technologies. When trying to obtain the highest possible performance of a MOSFET, the MOSFET must be biased such that its highest fmax is realized. If, on the other hand, the power consumption is a great concern in a terahertz mobile application, one can opt for a reduced-fmax design. Power-efficient bias points can be found in the FP plot. Continued improvement of the device performance is thus essential for achieving the ultimate low-power high-speed wireless communication even in mobile application.
  72. A 300GHz CMOS Transceiver Aiming for Long-Range Sub-Terahertz Communications, M. Fujishima, 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2021/08/26, With Invitation, English, Online
  73. A 300GHz CMOS Transceiver Targeting 6G, M. Fujishima, 2021 IEEE 14th International Conference on ASIC (ASICON), 2021/09/28, With Invitation, English, Online
  74. Technical issues in sub-terahertz band communications and 300 GHz CMOS transceivers, M. Fujishima, 9th Russia-Japan-USA-Europe Symposium on Fundamental & Applied Problems of Terahertz Devices & Technologies (RJUSE TeraTech-2021), 2021/11/03, With Invitation, English, Online
  75. Advances in Terahertz CMOS for 6G,, M. Fujishima, 2021 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), 2021/12/09, With Invitation, English, Online
  76. Sub-Terahertz Transceivers in Silicon, M. Fujishima, ISSCC Forum, 2022/02/25, With Invitation, English, Online

Awards

  1. 2017/09/01, IEEE International Symposium on Radio-Frequency Integration Technology RFIT Award, IEEE International Symposium on Radio-Frequency Integration Technology General Chair
  2. 2019/05/23, Global Symposium on Millimeter Waves 2019 (GSMM 2019) Best Paper Award, GSMM2019 General Chair GSMM2019 Award Committee Chair, 300-GHz Wireless Data Transmission System with Low-SNR CMOS RF Front End
  3. 2020/02/17, 2020 IEEE International Solid-State Circuits Conference 2019 Demonstration Session Certificate of Recognition, International Solid-State Circuits Conference (2020 ISSCC), An 80Gb/s 300GHz-Band Single-Chip CMOS Transceiver

Patented

  1. Patent, JP5500679, 2014/03/20
  2. Patent, 5665074, 2014/12/19
  3. Patent, 8976846, 2015/03/10
  4. 9294320, 2016/03/22

External Funds

Acceptance Results of Competitive Funds

  1. Strategic Information and Communications R&D Promotion Programme, 2013/08/29, 2014/03/14
  2. Strategic Basic Research Programs(CREST), 2009/08/01, 2015/03/31
  3. KAKENHI, Entrainment ability maximization in nonlinear oscillators by using calculus of variations, and its applications to practical design problems, 2011, 2013
  4. KAKENHI(Grant-in-Aid for Scientific Research (A)), 2018, 2020

Social Activities

Organizing Academic Conferences, etc.

  1. RFIT 2020, General Chair, 2020/09, 2020/09
  2. IEEE SSCS Kansai Chapter, 2014/07, 2014/07
  3. International Workshop on Advanced Solid-State Circuits in Tokyo, IEEE SSCS Kansai Chapter, 2014/11, 2014/11
  4. International Workshop on Advanced Solid-State Circuits in Kyoto , IEEE SSCS Kansai Chapter, 2014/11, 2014/11
  5. 2014/04, 2014/04
  6. 2014/05, 2014/05
  7. 2014/06, 2014/06
  8. 2014/07, 2014/07
  9. 2014/07, 2014/07
  10. 2014/08, 2014/08
  11. 2014/10, 2014/10
  12. 2014/12, 2014/12
  13. 2014/12, 2014/12
  14. 2015/01, 2015/01
  15. 2015/03, 2015/03
  16. 2015/03, 2012/03
  17. 2015/03, 2015/03
  18. Vietnam - Japan MicroWave Workshop (VJMW2014), 2014/11, 2014/11
  19. 2015/04, 2015/04
  20. 2015/04, 2015/04
  21. 2015/05, 2015/05
  22. 2015/06, 2015/06
  23. 2015/07, 2015/07
  24. 2015/08, 2015/08
  25. 2015/08, 2015/08
  26. 2015/10, 2015/10
  27. 2015/11, 2015/11
  28. 2015/11, 2015/11
  29. 2015/12, 2015/12
  30. 2015/12, 2015/12
  31. 2016/03, 2016/03
  32. 2016/03, 2016/03
  33. 2016/04, 2016/04
  34. 2016/05, 2016/05
  35. 2016/08, 2016/08
  36. 2016/09, 2016/09
  37. 2016/12, 2016/12
  38. 2017/01, 2017/01
  39. 2017/03, 2017/03
  40. 2017/02, 2017/02
  41. 2017/02, 2017/02
  42. 2017/03, 2017/03
  43. 2017/03, 2017/03
  44. 2017/04, 2017/04
  45. 2017/05, 2017/05